

reluis\_

# TERREMOTO AQUILANO DEL 6 APRILE 2009 STUDIO PRELIMINARE DELLA DOMANDA SISMICA ELASTICA ED ANELASTICA IN TERMINI DI ENERGIA, SPOSTAMENTI E FORZE (REL. 1.0)

Luis Decanini, Laura Liberatore, Fabrizio Mollaioli, Giorgio Monti, Omar Al Shawa

Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma "La Sapienza"

Citare come: Luis Decanini, Laura Liberatore, Fabrizio Mollaioli, Giorgio Monti, Omar Al Shawa (2009), Studio preliminare della domanda sismica elastica ed anelastica in termini di energia, spostamento e forze (Rel. 1.0), disponibile presso il sito <u>http://www.reluis.it</u>

# Indice

- 1. Introduzione
- 2. Stazioni accelerometriche considerate nel presente studio
- 3. Spettri di risposta (C<sub>y</sub>) elastici e anelastici
- 4. Spettri di energia di input (E<sub>I</sub>) elastici e anelastici
- 5. Spettri di spostamento elastici
- 6. Parametri caratteristici del potenziale di danno del moto del suolo
- 7. Pulsazioni in velocità dei segnali ubicati nel near-fault

# Bibliografia

## 1. Introduzione

Il terremoto di magnitudo  $M_w$ =6.3 ( $M_L$ =6.2), causato da una faglia normale distensiva, che il 6 aprile 2009 ha colpito l'Abruzzo, è il più forte terremoto registrato in Italia dal 1980 (Irpinia). La città de L'Aquila, duramente colpita dell'evento, si trova a circa 6 km a nord-est dell'epicentro, in posizione di *hanging wall*.

I risentimenti macrosismici, secondo la scala MCS (Mercalli Cancani Sieberg) a L'Aquila e a Onna sono stati pari a IX e a X, rispettivamente. A seguito dell'evento principale, sono state registrate numerose repliche, tra cui quelle di maggiore intensità verificatesi il 7 aprile alle 19:48 ( $M_w$ =5.6) ed il 9 aprile alle 2:53 ( $M_w$ =5.4).

Nel presente rapporto viene presentato uno studio preliminare dei segnali accelerometrici più significativi registrati durante la scossa principale e durante le repliche più importanti.

Lo studio comprende la valutazione della domanda elastica ed anelastica in termini di energia, spostamenti e forze per la scossa principale, della domanda elastica degli stessi parametri relativa alle repliche, e la stima di alcuni parametri caratteristici del potenziale di danno del moto del suolo. Vengono infine discussi alcuni aspetti legati alla presenza di pulsazioni in velocità nel *near-fault* 

che possono essere prodotte da fenomeni direttività.

#### 2. Stazioni accelerometriche considerate nel presente studio

A seguito dell'evento dell'Aquila del 6 Aprile 2009 (ore 01.32 UTC,  $M_w$ =6.3), sono state attivate 57 stazioni accelerometriche delle RAN (Rete Accelerometrica Nazionale), alcune delle quali ubicate nella città di L'Aquila o nella porzione della Valle dell'Aterno a nord-ovest della città. Nei giorni successivi sono state registrate numerose repliche, alcune delle quali di magnitudo  $M_w$ >5.0. Nel presente studio si analizza la domanda sismica valutata principalmente in termini di energia, spostamenti e forze, sia per la scossa principale che per le repliche più significative indicate in Tabella 1.

| Data e ora         | M <sub>w</sub> | Profondità |
|--------------------|----------------|------------|
|                    |                | (km)       |
| 6 aprile ore 1:32  | 6.3            | 9.46       |
| 6 aprile ore 2:37  | 5.1            | 10.10      |
| 6 aprile ore 23:15 | 5.1            | 8.60       |
| 7 aprile ore 17:48 | 5.6            | 15.10      |
| 9 aprile ore 00:53 | 5.4            | 15.40      |
| 9 aprile ore 19:38 | 5.3            | 17.20      |

Tabella 1: Elenco eventi sismici considerati nel presente studio.

A tale scopo vengono prese in esame le stazioni accelerometriche più vicine alla zona epicentrale del *mainshock* e degli *aftershock*, in quanto al crescere della distanza epicentrale le domande sismiche decrescono con notevole rapidità, già a partire da distanze di qualche decina di chilometri. Le stazioni considerate, indicate in Tabella 2 (RAN, ITACA), sono localizzate nella città di L'Aquila (stazione AQK), nella porzione della Valle dell'Aterno a NW della città (AQA, AQF, AQG, AQM, AQP, AQV) e in località Assergi (GSA). Nella stessa Tabella sono anche indicati: la data dell'evento, la denominazione della stazione, la collocazione geografica della stazione, il valore massimo di accelerazione tra le due componenti orizzontali non corrette (PGA<sub>uncorr</sub>) e la distanza epicentrale. Le stazioni considerate, ad eccezione di GSA, possono considerarsi nel *nearfault*, con distanze dalla faglia stimate nel *range* 0-3 km.

Per quanto riguarda la categoria di sottosuolo (secondo EC8-NTC2008) delle stazioni considerate (Tabella 2), si ha la seguente classificazione di sito (Di Capua et al. 2009):

- la stazione AQV è collocata su suolo di tipo B;
- la stazione AQG è collocata su suolo A;
- la stazione AQA è collocata su suolo B;
- la stazione AQK è collocata su suolo B;
- la stazione AQM è collocata su suolo A;
- la stazione AQP è collocata su suolo A;
- la stazione AQF è collocata su suolo B.

Ad eccezione della stazione AQV, per la quale è disponibile il profilo di velocità delle onde di taglio, ricavato da una prova *cross-hole*, le altre classificazioni derivano dall'analisi delle mappe geologiche e litologiche, da sopralluoghi effettuati e dal confronto dei rapporti spettrali tra componenti orizzontali e verticali. La stazione AQM rappresenta un caso molto particolare, in quanto collocata tra due muri di sostegno posizionati a livelli diversi, e non può essere quindi considerata di tipo *free-field*. Infine la stazione GSA, in prossimità di Assergi è su suolo A, identificato sempre mediante mappe geologiche (Ameri et al. 2009; Chioccarelli et al. 2009).

| Codice stazione   | Località                            | Record | Lat N  | Long E | PGA <sub>uncorr</sub> (cm/s <sup>2</sup> ) | d <sub>eni</sub> (km) |
|-------------------|-------------------------------------|--------|--------|--------|--------------------------------------------|-----------------------|
| 6 aprile ore 1:32 | (UTC)                               |        |        |        |                                            |                       |
| AQV               | L'Aquila - v. Aterno - Centro Valle | GX066  | 42.377 | 13.344 | 662.60                                     | 4.8                   |
| AQG               | L'Aquila - v. Aterno - Colle Grilli | FA030  | 42.373 | 13.337 | 504.92                                     | 4.3                   |
| AQA               | L'Aquila - v. Aterno - F. Aterno    | CU104  | 42.376 | 13.339 | 478.00                                     | 5.8                   |
| AQK               | Aquil PARK ing.                     | AM043  | 42.345 | 13.401 | 366.29                                     | 5.6                   |
| AQM               | L'Aquila - v. Aterno -Il Moro       | BO113  | 42.379 | 13.349 | 1291.12*                                   | 5.2                   |
| GSA               | Gran Sasso (Assergi)                | EF021  | 42.421 | 13.519 | 148.86                                     | 18                    |
| 6 aprile ore 2:37 | (UTC)                               | -      | -      | -      |                                            |                       |
| AQM               | L'Aquila - v. Aterno - Il Moro      | BO142  | 42.379 | 13.349 | 347.08                                     | 1.5                   |
| AQG               | L'Aquila - v. Aterno - Colle Grilli | FA060  | 42.373 | 13.337 | 84.95                                      | 0.8                   |
| AQK               | Aquil PARK ing.                     | AM079  | 42.345 | 13.401 | 78.21                                      | 5.5                   |
| 6 aprile ore 23:1 | 5 (UTC)                             |        |        |        |                                            |                       |
| AQV               | L'Aquila - v. Aterno - Centro Valle | GX225  | 42.377 | 13.344 | 150.00                                     | 8.4                   |
| AQK               | Aquil PARK ing.                     | AM325  | 42.345 | 13.401 | 40.63                                      | 12.2                  |
| 7 aprile ore 17:4 | 8 (UTC)                             |        |        |        |                                            |                       |
| GSA               | Gran Sasso (Assergi)                | EF068  | 42.421 | 13.519 | 276.63                                     | 16.7                  |
| AQG               | L'Aquila - v. Aterno - Colle Grilli | FA194  | 42.373 | 13.337 | 146.08                                     | 15.2                  |
| AQV               | L'Aquila - v. Aterno - Centro Valle | GX333  | 42.377 | 13.344 | 144.64                                     | 15.1                  |
| AQM               | L'Aquila - v. Aterno -Il Moro       | BO382  | 42.379 | 13.349 | 121.17                                     | 14.9                  |
| AQP               | L'Aquila - v. Aterno -M. Pettino    | VN048  | 42.384 | 13.369 | 92.37                                      | 14                    |
| AQK               | Aquil PARK ing.                     | AM383  | 42.345 | 13.401 | 89.06                                      | 9.3                   |
| AQF               | L'Aquila - v. Aterno -Ferriera      | AI015  | 42.381 | 13.355 | 77.68                                      | 14.8                  |
| 9 aprile ore 00:5 | 3 (UTC)                             | 1      | 1      | T      |                                            |                       |
| GSA               | Gran Sasso (Assergi)                | EF101  | 42.421 | 13.519 | 177.14                                     | 16.1                  |
| AQV               | L'Aquila - v. Aterno - Centro Valle | GX401  | 42.377 | 13.344 | 158.85                                     | 11.9                  |
| AQM               | L'Aquila - v. Aterno -Il Moro       | BO311  | 42.379 | 13.349 | 88.76                                      | 11.8                  |
| AQP               | L'Aquila - v. Aterno -M. Pettino    | VO026  | 42.384 | 13.369 | 75.95                                      | 11.4                  |
| AQG               | L'Aquila - v. Aterno - Colle Grilli | FA237  | 42.373 | 13.337 | 71.97                                      | 12.3                  |
| AQA               | L'Aquila - v. Aterno - F. Aterno    | CW119  | 42.376 | 13.339 | 57.90                                      | 12.1                  |
| AQK               | Aquil PARK ing.                     | AM440  | 42.345 | 13.401 | 49.30                                      | 16.2                  |
| 9 aprile ore 19:3 | 8 (UTC)                             |        |        |        |                                            |                       |
| AQV               | L'Aquila - v. Aterno - Centro Valle | GX419  | 42.377 | 13.344 | 100.28                                     | 13.7                  |
| AQP               | L'Aquila - v. Aterno -M. Pettino    | VP015  | 42.384 | 13.369 | 56.56                                      | 13                    |
| GSA               | Gran Sasso (Assergi)                | EF137  | 42.421 | 13.519 | 45.84                                      | 15.8                  |
| AQA               | L'Aquila - v. Aterno - F. Aterno    | CW291  | 42.376 | 13.339 | 45.71                                      | 14                    |
| AQG               | L'Aquila - v. Aterno - Colle Grilli | FA260  | 42.373 | 13.337 | 36.54                                      | 14.2                  |
| AQK               | Aquil PARK ing.                     | AM470  | 42.345 | 13.401 | 24.36                                      | 17.6                  |

Tabella 2: Elenco registrazioni accelerometriche considerate nel presente studio.

\* Il valore supera il limite di saturazione dello strumento

# 3. Spettri di risposta (C<sub>v</sub>) elastici e anelastici

Le seguenti figure mostrano gli spettri di risposta in termini di coefficiente sismico C<sub>y</sub>, (definito come rapporto tra taglio massimo alla base e peso dell'edificio e comparabile con la domanda spettrale in accelerazione) relativi alla scossa principale. In rosso sono riportati gli spettri elastici (smorzamento 5%) ed in nero quelli anelastici a duttilità di spostamento costante  $\mu = 2$  e  $\mu = 4$  calcolati per un oscillatore non lineare che prevede un legame costitutivo degradante sia in termini di rigidezza che di resistenza, sempre con coefficiente di smorzamento pari al 5% di quello critico. Le differenze tra la domanda elastica e quella anelastica sono per lo più molto marcate, anche utilizzando una duttilità pari a 2, valore che può essere considerato come rappresentativo della capacità ultima per la maggior parte delle strutture esistenti in cemento armato realizzate in assenza di normativa sismica e senza considerare le tamponature. Gli spettri anelastici si possono comunque ritenere compatibili con lo scenario di danno osservato, in particolare per il cemento armato.









Nelle due figure seguenti sono riportati gli spettri anelastici relativi alle quattro registrazioni *near-fault* della scossa principale per una duttilità pari a 2.



Si può notare che gli spettri relativi alle componenti EW sono tra loro confrontabili a partire da un periodo T = 0.2 s ad eccezione di AQV. Per quanto riguarda la componente NS si riscontra una maggiore variabilità.

Gli spettri elastici relativi alle repliche considerate sono indicati nelle seguenti figure insieme a quelli della scossa principale (linea nera in grassetto). Per la registrazione della stazione GSA la replica del 7 aprile mostra valori della domanda superiori a quella della scossa principale, coerentemente con la variazione della posizione dell'epicentro.







Come si può notare, ad eccezione della stazione GSA, le domande elastiche per le repliche sono significativamente minori di quelle corrispondenti alla scossa principale.

# 4. Spettri di energia di input (E<sub>I</sub>) elastici e anelastici

L'energia di input assoluta E<sub>I</sub>, che è definita dalla seguente equazione di bilancio energetico (Uang & Bertero 1990),

$$\mathbf{E}_{\mathbf{I}} = \mathbf{E}_{\mathbf{k}} + \mathbf{E}_{\boldsymbol{\xi}} + \mathbf{E}_{\mathbf{s}} + \mathbf{E}_{\mathbf{H}}$$

dove  $E_k$  è l'energia cinetica,  $E_{\xi}$  è l'energia di smorzamento,  $E_s$  è l'energia di deformazione elastica, e  $E_H$  è l'energia isteretica che può essere associata direttamente al danno, può essere espressa mediante la seguente relazione:

$$\frac{\mathrm{E}_{\mathrm{I}}}{\mathrm{m}} = \int \ddot{\mathrm{u}}_{\mathrm{t}} \mathrm{d}\mathrm{u}_{\mathrm{g}} = \int \ddot{\mathrm{u}}_{\mathrm{t}} \dot{\mathrm{u}}_{\mathrm{g}} \mathrm{d}\mathrm{t}$$

dove m è la massa,  $u_t = u + u_g$  è lo spostamento assoluto della massa, e  $u_g$  è lo spostamento del suolo. Per comodità di trattazione l'energia di input per unità di massa,  $E_I/m$ , verrà chiamato nel seguito come  $E_I$ . Le seguenti figure mostrano gli spettri di risposta in termini di energia  $E_I$  relativi alla scossa principale. In rosso sono riportati gli spettri elastici (smorzamento 5 %) ed in nero quelli anelastici a duttilità costante  $\mu = 2$  e  $\mu = 4$ .







Comparativamente agli spettri  $C_y$  si osservano: una minore influenza della duttilità ed uno spostamento verso le basse frequenze della fascia di periodi corrispondenti ai valori massimi. Successivamente sono riportati gli spettri elastici relativi alle repliche considerate. Si noti che in tali grafici non sono presenti gli spettri relativi alla scossa principale, che presentano valori molto

maggiori, ad eccezione della registrazione della stazione GSA (Assergi).









## 5. Spettri di spostamento elastici

Le seguenti figure illustrano gli spettri di spostamento elastici per la scossa principale e per le repliche. Gli spettri anelastici (non riportati) non differiscono significativamente, ad eccezione della zona delle alte frequenze.









Si nota che gli spostamenti massimi per la scossa principale sono dell'ordine di circa 10-15 cm, tranne che per la stazione AQK, per la quale si raggiungono valori maggiori di 20 cm.

#### 6. Parametri caratteristici del potenziale di danno del moto del suolo

Nelle Tabelle da 3 a 8 si confrontano alcuni parametri sintetici impiegati per caratterizzare il potenziale di danno del moto del suolo. I parametri che vengono considerati in questo lavoro sono il picco di accelerazione (PGA), il picco di velocità (PGV), la velocità incrementale, l'intensità di Arias (I<sub>A</sub>), l'intensità Housner (I<sub>H</sub>), l'accelerazione efficace (EPA), il parametro di pericolosità sismica in termini energetici AEI (Decanini & Mollaioli 1998), l'energia di input massima (E<sub>Imax</sub>), l'energia isteretica (E<sub>H</sub>) valutata per una duttilità in spostamento pari a 2 ed i corrispondenti periodi. I parametri strumentali includono quindi il picco di accelerazione del terreno (PGA) e il picco di velocità (PGV). L'accelerazione di picco del terreno (PGA) è il parametro erroneamente considerato come uno dei fattori principali direttamente responsabili del danneggiamento delle strutture; è inoltre quello maggiormente utilizzato nelle applicazioni ingegneristiche, essendo l'accelerazione direttamente proporzionale alle forze di inerzia agenti sulle strutture. Tuttavia esso si rivela di scarsa efficacia, potendo essere associato a un breve impulso di frequenza molto elevata, al di fuori del campo di frequenze naturali della maggior parte delle strutture: in questo caso, la maggior parte dell'impulso viene assorbita dall'inerzia della struttura con piccole deformazioni. Un'accelerazione più moderata può invece essere associata a un impulso a bassa frequenza di lunga durata, il cui risultato è una deformazione significativa della struttura. Inoltre il PGA può essere distorto dalla presenza di irregolarità superficiali locali della topografia, o da altri fattori quali l'interazione con la risposta di grandi strutture vicine.

La velocità di picco del terreno (PGV) fornisce un miglior approccio alla definizione del potere distruttivo dei terremoti.

Un altro indice del potenziale di danneggiamento del moto del suolo, particolarmente adatto in zone prossime alla faglia (*near-fault*) è stato suggerito da Bertero et al. (1976) ed è la massima velocità incrementale (IV). Essa rappresenta l'area sottesa da una pulsazione di accelerazione, quindi, maggiore è il cambiamento in velocità, maggiore è la pulsazione di accelerazione. In molte registrazioni risultano ben distinguibili queste pulsazioni in accelerazione, soprattutto nelle zone *near-fault*. Dal punto di vista strutturale, in generale, le condizioni critiche si raggiungono quando una pulsazione di lunga durata presenta un'accelerazione media dello stesso ordine del coefficiente sismico di resistenza allo snervamento  $C_y$ .

Molti tentativi sono stati effettuati per cercare di formulare un'espressione più appropriata del picco di accelerazione che meglio cogliesse, dal punto di vista ingegneristico (Uang & Bertero 1988), gli aspetti legati al potenziale di danneggiamento. Nello sviluppo delle normative sismiche è stato introdotto il concetto di accelerazione efficace (EPA) descritta dalla seguente espressione:

$$EPA = \frac{\overline{S}_{pa}}{2.5}$$

dove  $\overline{S}_{pa}$  è il valore medio dell'accelerazione spettrale nell'intervallo di periodo compreso tra 0.1 e 0.5.

Un parametro che permette di tenere in conto sia la durata che l'ampiezza del moto del suolo, ma non il contenuto in frequenze, molto noto in letteratura, è l'Intensità di Arias (Arias, 1969), I<sub>A</sub>:

$$I_{A} = \frac{\pi}{2g} \int_{0}^{t_{d}} \ddot{a}_{g}^{2}(t) dt$$

Essa rappresenta anche una misura dell'energia immessa in un sistema elastico, ma tende a sovrastimare l'intensità di un terremoto di lunga durata, elevata accelerazione ed ampio contenuto in frequenze.

L'Intensità di Housner, I<sub>H</sub>, che è anche una misura del potenziale di danno da un punto di vista energetico poiché lo spettro di pseudovelocità S<sub>PV</sub> riflette la domanda energetica in un sistema elastico ad un grado di libertà (SDOF), cioè  $E_v = \frac{1}{2} m (S_{pv})^2$ , è definita dalla seguente relazione:

$$I_{\rm H} = \int_{T_0}^{T_1} S_{\rm PV} (\xi = 5\%, T) dT$$

dove  $S_{PV}$  è lo spettro di pseudovelocità, T il periodo di vibrazione e  $\xi$  lo smorzamento. In questo caso gli estremi di integrazione adottati sono pari a 0.1 e 2.5.

Il parametro di pericolosità sismica in termini energetici, AEI, rappresenta l'area racchiusa dallo spettro elastico dell'energia di input per diversi intervalli di periodo T:

$$AEI = \int_{T_1}^{T_2} E_I (\xi = 5\%, T) dT$$

Questo parametro a differenza dei valori spettrali di picco, che generalmente corrispondono a ristretti campi di frequenza, permette di tenere conto dell'energia globale impartita ai diversi sistemi strutturali ed, inoltre, è uno dei parametri energetici più stabili da un punto di vista statistico. In questo studio sono stati considerati tre intervalli di periodo: 0.05-1.0 secondi, 0.05-2.0 secondi e 0.05-4.0 secondi.

|        |        |        |              |      |                    |                               |            | _          |            |                  |                |                   |                    |
|--------|--------|--------|--------------|------|--------------------|-------------------------------|------------|------------|------------|------------------|----------------|-------------------|--------------------|
|        | PGA    | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $\mathrm{I}_{\mathrm{Housn}}$ | AEI(0-1)   | AEI(0-2)   | AEI(0-4)   | $E_{Imax}$       | $T_{EImax} \\$ | $E_{Hmax, \mu=2}$ | $T_{\text{EHmax}}$ |
|        | (g)    | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)                          | $(cm^2/s)$ | $(cm^2/s)$ | $(cm^2/s)$ | $(cm^{2}/s^{2})$ | (s)            | $(cm^2/s^2)$      | (s)                |
| AQV_EW | 0.626  | 36.7   | 0.471        | 69.5 | 280.7              | 128.0                         | 5771       | 8301       | 9555       | 14190            | 0.40           | 4135              | 0.35               |
| AQV_NS | 0.598  | 40.5   | 0.502        | 63.8 | 198.3              | 94.5                          | 4483       | 5590       | 6126       | 10602            | 0.55           | 5311              | 0.40               |
| AQG_EW | 0.416  | 33.6   | 0.316        | 37.8 | 128.5              | 115.6                         | 3720       | 6115       | 7300       | 7752             | 0.85           | 2561              | 0.75               |
| AQG_NS | 0.434  | 35.9   | 0.309        | 47.8 | 128.9              | 91.8                          | 4248       | 5747       | 6197       | 10324            | 0.90           | 3737              | 0.75               |
| AQA_EW | 0.394  | 30.5   | 0.254        | 21.6 | 156.0              | 87.3                          | 1728       | 3207       | 4016       | 3697             | 0.80           | 1379              | 0.70               |
| AQA_NS | 0.451  | 24.5   | 0.384        | 44.8 | 170.2              | 75.3                          | 3238       | 4100       | 4592       | 9769             | 0.45           | 3812              | 0.40               |
| AQK_EW | 0.342  | 30.3   | 0.220        | 34.4 | 99.5               | 138.5                         | 2408       | 10664      | 14050      | 14443            | 1.75           | 5206              | 1.35               |
| AQK_NS | 0.340  | 38.6   | 0.245        | 41.5 | 118.5              | 142.1                         | 2722       | 10513      | 14413      | 11167            | 1.70           | 4283              | 1.30               |
| AQM_EW | 1.166  | 43.6   | 0.742        | 71.5 | 382.6              | 103.0                         | 3927       | 5191       | 5706       | 7661             | 0.20           | 3843              | 0.15               |
| AQM_NS | 0.891  | 25.5   | 0.307        | 32.4 | 151.4              | 71.0                          | 1412       | 2151       | 3359       | 3619             | 0.25           | 1319              | 0.20               |
| GSA_EW | 150.55 | 9.7    | 0.157        | 12.4 | 39.5               | 32.5                          | 410        | 579        | 949        | 1384             | 0.30           | 464               | 0.25               |
| GSA_NS | 0.149  | 7.4    | 0.093        | 11.0 | 43.1               | 27.5                          | 385        | 507        | 807        | 1307             | 0.30           | 495               | 0.25               |

Tabella 3: Parametri moto del suolo. Evento del 6 aprile 2009 (M<sub>w</sub>=6.3).

Tabella 4: Parametri moto del suolo. Evento del 6 aprile 2009 (ore 02:37:04, M<sub>w</sub>=5.1).

|        | PGA   | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $I_{\text{Housn}}$ | AEI(0-2)   | E <sub>Imax</sub> |
|--------|-------|--------|--------------|------|--------------------|--------------------|------------|-------------------|
|        | (g)   | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)               | $(cm^2/s)$ | $(cm^2/s^2)$      |
| AQG_EW | 0.076 | 2.3    | 0.050        | 4.1  | 3.3                | 5.9                | 34         | 93                |
| AQG_NS | 0.078 | 3.4    | 0.053        | 4.9  | 3.8                | 7.1                | 40         | 137               |
| AQK_EW | 0.050 | 2.4    | 0.027        | 2.4  | 1.8                | 6.7                | 38         | 71                |
| AQK_NS | 0.081 | 1.9    | 0.035        | 3.0  | 3.0                | 6.9                | 39         | 74                |
| AQM_EW | 0.101 | 2.4    | 0.047        | 3.8  | 6.0                | 4.9                | 20         | 55                |
| AQM_NS | 0.332 | 8.0    | 0.160        | 14.0 | 18.2               | 12.8               | 137        | 946               |

|        | PGA   | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $I_{Housn}$ | AEI(0-2)   | E <sub>Imax</sub> |
|--------|-------|--------|--------------|------|--------------------|-------------|------------|-------------------|
|        | (g)   | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)        | $(cm^2/s)$ | $(cm^2/s^2)$      |
| AQV_EW | 0.152 | 4.4    | 0.079        | 7.1  | 5.7                | 10.1        | 119        | 231               |
| AQV_NS | 0.097 | 3.2    | 0.061        | 5.6  | 3.9                | 7.9         | 49         | 75                |
| AQK_EW | 0.035 | 1.7    | 0.019        | 2.4  | 0.8                | 7.6         | 41         | 35                |
| AQK_NS | 0.041 | 2.4    | 0.028        | 4.0  | 1.4                | 11.7        | 105        | 138               |

Tabella 5: Parametri moto del suolo. Evento del 6 aprile 2009 (ore 23:15:37, M<sub>w</sub>=5.1).

Tabella 6: Parametri moto del suolo. Evento del 7 aprile 2009 (M<sub>w</sub>=5.6).

|        | PGA   | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $I_{Housn} \\$ | AEI(0-2)   | $E_{\text{Imax}}$ |
|--------|-------|--------|--------------|------|--------------------|----------------|------------|-------------------|
|        | (g)   | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)           | $(cm^2/s)$ | $(cm^{2}/s^{2})$  |
| GSA_EW | 0.282 | 16.3   | 0.197        | 17.3 | 27.9               | 28.9           | 463        | 1107              |
| GSA_NS | 0.252 | 9.8    | 0.140        | 11.1 | 22.4               | 24.4           | 290        | 336               |
| AQG_EW | 0.137 | 6.3    | 0.112        | 12.3 | 9.7                | 18.2           | 209        | 600               |
| AQG_NS | 0.105 | 6.3    | 0.105        | 10.2 | 9.3                | 18.2           | 221        | 446               |
| AQV_EW | 0.130 | 5.1    | 0.104        | 9.1  | 12.2               | 14.7           | 173        | 475               |
| AQV_NS | 0.147 | 5.4    | 0.115        | 9.8  | 12.9               | 13.7           | 204        | 879               |
| AQP_EW | 0.094 | 4.3    | 0.071        | 6.9  | 4.1                | 10.4           | 76         | 235               |
| AQP_NS | 0.076 | 2.8    | 0.057        | 4.7  | 3.4                | 9.6            | 81         | 107               |
| AQK_EW | 0.090 | 7.0    | 0.057        | 11.6 | 5.8                | 29.4           | 515        | 641               |
| AQK_NS | 0.081 | 4.8    | 0.075        | 8.3  | 6.8                | 19.8           | 308        | 398               |
| AQF_EW | 0.053 | 1.6    | 0.038        | 2.8  | 2.0                | 4.6            | 21         | 50                |
| AQF_NS | 0.078 | 3.1    | 0.062        | 6.0  | 4.3                | 6.1            | 49         | 241               |
| AQM_EW | 0.092 | 3.7    | 0.061        | 4.9  | 3.3                | 8.2            | 44         | 83                |
| AQM_NS | 0.128 | 3.5    | 0.065        | 5.1  | 5.0                | 6.5            | 43         | 178               |

Tabella 7: Parametri moto del suolo. Evento del 9 aprile 2009 (ore 00:52:59, M<sub>w</sub>=5.4).

|        | PGA   | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $\mathrm{I}_{\mathrm{Housn}}$ | AEI(0-2)   | E <sub>Imax</sub> |
|--------|-------|--------|--------------|------|--------------------|-------------------------------|------------|-------------------|
|        | (g)   | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)                          | $(cm^2/s)$ | $(cm^2/s^2)$      |
| GSA_EW | 0.169 | 6.2    | 0.123        | 12.0 | 14.4               | 19.6                          | 206        | 540               |
| GSA_NS | 0.181 | 8.3    | 0.108        | 7.7  | 15.7               | 17.9                          | 187        | 247               |
| AQV_EW | 0.151 | 7.9    | 0.107        | 9.7  | 9.5                | 17.2                          | 187        | 376               |
| AQV_NS | 0.101 | 6.1    | 0.081        | 9.3  | 5.5                | 12.6                          | 96         | 142               |
| AQP_EW | 0.072 | 3.7    | 0.050        | 3.8  | 2.3                | 12.8                          | 83         | 154               |
| AQP_NS | 0.078 | 3.7    | 0.059        | 6.8  | 3.5                | 15.0                          | 139        | 176               |
| AQG_EW | 0.066 | 5.2    | 0.053        | 9.5  | 3.0                | 17.2                          | 131        | 216               |
| AQG_NS | 0.061 | 4.3    | 0.059        | 8.0  | 3.7                | 14.5                          | 124        | 267               |
| AQA_EW | 0.052 | 2.4    | 0.035        | 3.1  | 1.9                | 9.5                           | 47         | 87                |
| AQA_NS | 0.057 | 4.7    | 0.054        | 7.3  | 2.9                | 14.0                          | 95         | 164               |
| AQK_EW | 0.040 | 3.4    | 0.028        | 4.5  | 1.9                | 17.8                          | 202        | 193               |
| AQK_NS | 0.050 | 4.1    | 0.033        | 5.3  | 2.4                | 19.0                          | 201        | 277               |
| AQM_EW | 0.086 | 2.9    | 0.045        | 3.7  | 2.0                | 9.4                           | 38         | 66                |
| AQM_NS | 0.077 | 1.9    | 0.044        | 3.6  | 3.0                | 6.5                           | 26         | 57                |

|        | PGA   | PGV    | EPA(0.1-0.5) | IV   | I <sub>Arias</sub> | $\mathrm{I}_{\mathrm{Housn}}$ | AEI(0-2)   | E <sub>Imax</sub> |
|--------|-------|--------|--------------|------|--------------------|-------------------------------|------------|-------------------|
|        | (g)   | (cm/s) | (g)          | (cm) | (cm/s)             | (cm)                          | $(cm^2/s)$ | $(cm^2/s^2)$      |
| AQV_EW | 0.105 | 2.5    | 0.059        | 4.1  | 3.5                | 5.7                           | 27         | 105               |
| AQV_NS | 0.060 | 1.2    | 0.033        | 2.2  | 2.3                | 3.0                           | 12         | 46                |
| AQP_EW | 0.057 | 1.9    | 0.042        | 2.7  | 1.6                | 4.8                           | 19         | 58                |
| AQP_NS | 0.041 | 1.9    | 0.041        | 3.5  | 1.3                | 4.5                           | 18         | 56                |
| GSA_EW | 0.047 | 1.2    | 0.030        | 2.2  | 2.3                | 2.7                           | 11         | 29                |
| GSA_NS | 0.046 | 1.4    | 0.031        | 2.3  | 1.6                | 2.6                           | 11         | 28                |
| AQA_EW | 0.045 | 1.3    | 0.019        | 1.7  | 1.1                | 3.1                           | 7          | 13                |
| AQA_NS | 0.045 | 1.5    | 0.026        | 1.7  | 0.9                | 3.8                           | 10         | 34                |
| AQG_EW | 0.037 | 1.8    | 0.027        | 2.0  | 0.8                | 5.1                           | 14         | 30                |
| AQG_NS | 0.028 | 1.1    | 0.024        | 2.0  | 0.8                | 3.3                           | 10         | 23                |
| AQK_EW | 0.022 | 0.9    | 0.015        | 1.4  | 0.4                | 4.6                           | 16         | 21                |
| AQK_NS | 0.024 | 1.0    | 0.018        | 1.4  | 0.7                | 4.1                           | 14         | 15                |

Tabella 8: Parametri moto del suolo. Evento del 9 aprile 2009 (ore 19:38:16, M<sub>w</sub>=5.3).

Per quanto riguarda le componenti verticali del moto, il massimo valore del PGA, considerando le quattro stazioni più vicine a L'Aquila, è pari a circa 412 cm/s<sup>2</sup>. I rapporti tra la massima accelerazione orizzontale e quella verticale sono compresi tra 0.67 ed 0.84, tali valori rientrano tra quelli riscontrati usualmente nel *near-fault*. Fa eccezione la stazione AQK (Aquil Park ing.), che ha registrato una componente verticale circa uguale a quella orizzontale.

Nel seguito, a titolo di confronto sono riportati alcuni dei parametri menzionati per alcune registrazioni dei terremoti dell'Umbria-Marche (1997), dell'Irpinia (1980) e del Friuli (1976).

| Chioria infarche | 1///           |              |          |         |               |       |        |      |              |                    |
|------------------|----------------|--------------|----------|---------|---------------|-------|--------|------|--------------|--------------------|
| Data e ora       | $M_{\rm w}$    | Stazione     | Record   | Df      | Soil (EC8)    | PGA   | PGV    | IV   | EPA(0.1-0.5) | I <sub>Arias</sub> |
| Duiu Coru        |                |              |          | (km)    | 50H (200)     | (g)   | (cm/s) | (cm) | (g)          | (cm/s)             |
| 26 sett. 09:40   | 6.0            | Nocera Umbra | R1168NS  | 4.7     | А             | 0.578 | 29.2   | 42.6 | 0.437        | 332.0              |
| 26 sett. 09:40   | 6.0            | Nocera Umbra | R1168EW  | 4.7     | А             | 0.492 | 28.0   | 43.1 | 0.512        | 287.6              |
| 26 sett. 00:33   | 5.7            | Nocera Umbra | R1164NS  | 15.0    | А             | 0.595 | 22.8   | 32.9 | 0.302        | 138.7              |
| 26 sett. 00:33   | 5.7            | Nocera Umbra | R1164EW  | 15.0    | А             | 0.288 | 10.2   | 18.3 | 0.241        | 98.6               |
| Irpinia 1980     |                |              |          |         |               |       |        |      |              |                    |
| Defension        | M <sub>w</sub> | Stazione     | Record   | Df      | G.:1(EC0)     | PGA   | PGV    | IV   | EPA(0 1-0.5) | I <sub>Arias</sub> |
| Data e ora       |                |              |          | (km)    | Soll (EC8)    | (g)   | (cm/s) | (cm) | (g)          | (cm/s)             |
| 23 nov. 19:34    | 6.9            | Sturno       | STURNS   | 6.7     | В             | 0.255 | 42.3   | 60.1 | 0.255        | 126.5              |
| 23 nov. 19:34    | 6.9            | Sturno       | STURWE   | 6.7     | В             | 0.313 | 70.0   | 74.9 | 0.319        | 147.5              |
| 23 nov. 19:34    | 6.9            | Calitri      | CALITNS  | 20.5    | В             | 0.156 | 24.6   | 48.4 | 0.139        | 105.5              |
| 23 nov. 19:34    | 6.9            | Calitri      | CALITWE  | 20.5    | В             | 0.181 | 31.7   | 42.5 | 0.164        | 135.7              |
| Friuli 1976      |                |              |          |         |               |       |        |      |              |                    |
| Defension        | M <sub>w</sub> | Stazione     | Record   | $D_{f}$ | Q = 1 (T C Q) | PGA   | PGV    | IV   | EPA(0 1-0 5) | I <sub>Arias</sub> |
| Data e ora       |                |              |          | (km)    | 5011 (EC8)    | (g)   | (cm/s) | (cm) | (g)          | (cm/s)             |
| 6 magg. 20:00    | 6.5            | Tolmezzo     | TOLMEZNS | 16.0    | В             | 0.324 | 20.3   | 30.0 | 0.302        | 78.0               |
| 6 magg. 20:00    | 6.5            | Tolmezzo     | TOLMEZWE | 16.0    | В             | 0.355 | 32.1   | 50.5 | 0.306        | 119.2              |

 Tabella 9: Elenco dei terremoti italiani utilizzati a titolo di confronto e alcuni parametri caratteristici (1di 2).

 Umbria-Marche 1997

| Umbria-Marche | 1997     |                        |            |                            |                                                       |                                                       |                                                       |  |  |  |
|---------------|----------|------------------------|------------|----------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Stazione      | Record   | D <sub>f</sub><br>(km) | Soil (EC8) | I <sub>Housn</sub><br>(cm) | $\begin{array}{c} AEI_{(0-2)}\\ (cm^2/s) \end{array}$ | $\begin{array}{c} AEI_{(0-4)}\\ (cm^2/s) \end{array}$ | $\begin{array}{c} E_{Imax} \\ (cm^2/s^2) \end{array}$ |  |  |  |
| Nocera Umbra  | R1168NS  | 4.7                    | А          | 81.5                       | 3773                                                  | 4538                                                  | 6267                                                  |  |  |  |
| Nocera Umbra  | R1168EW  | 4.7                    | А          | 86.3                       | 4998                                                  | 5536                                                  | 14954                                                 |  |  |  |
| Nocera Umbra  | R1164NS  | 15.0                   | А          | 39.3                       | 927                                                   | 1111                                                  | 4660                                                  |  |  |  |
| Nocera Umbra  | R1164EW  | 15.0                   | А          | 20.8                       | 578                                                   | 652                                                   | 4396                                                  |  |  |  |
| Irpinia 1980  |          |                        |            |                            |                                                       |                                                       |                                                       |  |  |  |
| Stazione      | Record   | D <sub>f</sub><br>(km) | Soil (EC8) | I <sub>Housn</sub><br>(cm) | $\frac{\text{AEI}_{(0-2)}}{(\text{cm}^2/\text{s})}$   | $\frac{\text{AEI}_{(0-4)}}{(\text{cm}^2/\text{s})}$   | $E_{Imax}$<br>(cm <sup>2</sup> /s <sup>2</sup> )      |  |  |  |
| Sturno        | STURNS   | 6.7                    | В          | 133.9                      | 8646                                                  | 20754                                                 | 8704                                                  |  |  |  |
| Sturno        | STURWE   | 6.7                    | В          | 165.4                      | 11066                                                 | 42686                                                 | 22899                                                 |  |  |  |
| Calitri       | CALITNS  | 20.5                   | В          | 116.1                      | 12502                                                 | 18806                                                 | 15527                                                 |  |  |  |
| Calitri       | CALITWE  | 20.5                   | В          | 118.1                      | 15004                                                 | 20990                                                 | 13655                                                 |  |  |  |
| Friuli 1976   |          |                        |            |                            |                                                       |                                                       |                                                       |  |  |  |
| Stazione      | Record   | D <sub>f</sub><br>(km) | Soil (EC8) | I <sub>Housn</sub><br>(cm) | $\frac{\text{AEI}_{(0-2)}}{(\text{cm}^2/\text{s})}$   | $\frac{\text{AEI}_{(0-4)}}{(\text{cm}^2/\text{s})}$   | $E_{Imax}$<br>(cm <sup>2</sup> /s <sup>2</sup> )      |  |  |  |
| Tolmezzo      | TOLMEZNS | 16.0                   | В          | 74.3                       | 2869                                                  | 3368                                                  | 6526                                                  |  |  |  |
| Tolmezzo      | TOLMEZWE | 16.0                   | В          | 89.0                       | 6367                                                  | 6967                                                  | 16037                                                 |  |  |  |

Tabella 9: Elenco dei terremoti italiani utilizzati a titolo di confronto e alcuni parametri caratteristici (2 di 2).

In termini energetici, i valori massimi corrispondenti al terremoto aquilano risultano paragonabili a quelli calcolati per il terremoto dell'Umbria-Marche (1997) e del Friuli (1976) e sono superati significativamente da quello relativo alla registrazione *near-fault* STURWE (Irpinia 1980). Per quanto riguarda il parametro AEI<sub>(0-4)</sub>, il terremoto de L'Aquila presenta valori superiori al terremoto Umbria-Marche, comunque va sempre considerata la diversa distanza dalla faglia.

Differenti scenari si riscontrano confrontando altri parametri caratteristici del potenziale di danneggiamento del moto del suolo.

# 7. Pulsazioni in velocità dei segnali ubicati nel near-fault

Le storie temporali delle accelerazioni e delle velocità sono riportate nelle seguenti figure per le quattro registrazioni della scossa principale. In particolare sono illustrate la componente EW delle registrazioni AQA, AQG, AQV e la componente NS della registrazione AQK. Queste mostrano tutte una pulsazione di lunga durata all'inizio del moto.





Tali pulsazioni, che si presentano spesso in condizioni di *near-fault* e non avvengono talvolta in concomitanza del picco in accelerazione, hanno un forte contenuto energetico. Si nota che per periodi compresi tra 0.5 e 4.0, e in condizioni di *forward directivity*, la durata della pulsazione,  $\Delta t_p$ , è prossima al periodo in cui si verifica il primo o il secondo, se presente, massimo spettrale

dell'energia di input (Mollaioli et al. 2006). In questo caso si verifica che per AQA\_EW  $\Delta t_p = 0.9$  e  $T_{EImax} = 0.8$ ; per AQG\_EW  $\Delta t_p = 1.1$  e  $T_{EImax} = 0.9$ ; per AQV\_EW  $\Delta t_p = 0.9$  e  $T_{EImax} = 0.7$ ; per AQK\_NS  $\Delta t_p = 1.8$  e  $T_{EImax} = 1.7$ . Tali valori si riferiscono alle componenti non ruotate rispetto alle direzioni normale e parallela alla faglia.

Per verificare se esistono polarizzazioni significative dovute a fenomeni di direttività, le componenti del moto sono state ruotate secondo le direzioni normale e parallela alla faglia (Somerville et al. 1997; Chioccarelli & Iervolino 2009). La faglia generatrice del terremoto è di tipo normale o dip-slip, con superficie di rottura di area pari a circa 220 km<sup>2</sup>, profondità ipocentrale pari a circa 10 km, e zona di massimo rilascio di energia situata a 6-7 km di profondità. Il piano di rottura forma con la direzione NS uno strike di 147 gradi, un dip di 43 gradi e uno slip di – 88 gradi (INGV, 2009). Nel seguito si riportano le storie temporali in velocità fra 0 e 10 s delle componenti registrate, NS ed EW, e di quelle proiettate SP (*Strike Parallel*) ed SN (*Strike Normal*).

I risultati non sembrano suggerire una significativa polarizzazione del moto del suolo nella direzione ortogonale alla faglia, che usualmente è indicativa di *forward directivity* della rottura (GEER report 2009). Sono comunque necessari ulteriori approfondimenti esaminando dettagliatamente l'evoluzione del processo di rottura alla sorgente.



Storia temporale della velocità fra 0 e 10 s. Registrazione AQA, componenti NS ed EW registrate e SP (Strike Parallel) ed SN (Strike Normal) proiettate.



Storia temporale della velocità fra 0 e 10 s. Registrazione AQG, componenti NS ed EW registrate e SP (Strike Parallel) ed SN (Strike Normal) proiettate.



Storia temporale della velocità fra 0 e 10 s. Registrazione AQV, componenti NS ed EW registrate e SP (Strike Parallel) ed SN (Strike Normal) proiettate.



Storia temporale della velocità fra 0 e 10 s. Registrazione AQK, componenti NS ed EW registrate e SP (Strike Parallel) ed SN (Strike Normal) proiettate.

#### **Bibliografia**

- Ameri, G., Augliera, P., Bindi, D., D'Alema, E., Ladina, C., Lovati, S., Luzi, L., Marzorati, S., Massa, M., Pacor, F. and Puglia, R. (2009). Strong motion parameters of the M<sub>w</sub>=6.3 Abruzzo (Central Italy) earthquake.
- Arias, A. (1969), "A Measure of Earthquake Intensity". *Massachusetts Institute of Technology*, Cambridge, Massachusetts.
- Bertero, V.V., Herrera, R.A and Mahin, S.A. (1976), "Establishment of design earthquake evaluation of present methods", Proceedings of the International Symposium on Earthquake Structural Engineering, St. Louis, Mo., 1, 551-580.
- Chioccarelli, E., De Luca, F. and Iervolino, I. (2009). Preliminary study of L'Aquila earthquake ground motion records V5.20, available at <u>http://www.reluis.it</u>
- Chioccarelli, E., Iervolino, I. (2009). "Direttività ed azione sismica: discussione per l'evento de L'Aquila", ANIDIS 2009, Bologna, disponibile presso il sito <u>http://www.reluis.it</u>
- Decanini, L. D. and F. Mollaioli (1998). Formulation of Elastic Earthquake Input Energy Spectra, *Earthquake Engineering and Structural Dynamics*, **27**, 1503-1522.
- Di Capua Giuseppe, Lanzo Giuseppe, Luzi Lucia, Pacor Francesca, Paolucci Roberto, Peppoloni Silvia, Scasserra Giuseppe, Puglia Rodolfo (2009) "Caratteristiche geologiche e classificazione di sito delle stazioni accelerometriche della RAN ubicate a L'Aquila", Progetto S4: Banca Dati Accelerometrica, Convenzione INGV DPC 2007 2009, Giugno 2009, <u>http://esse4.mi.ingv.it</u>
- GEER report (2009). Jonathan P. Stewart, Giuseppe Di Capua, Robert E. Kayen, D. Scott Kieffer, Edward Button, Giovanna Biscontin, Giuseppe Scasserra, Giuseppe Lanzo, Paolo Tommasi, Alessandro Pagliaroli, Francesco Silvestri, Anna d'Onofrio, Armando Lucio Simonelli, Rodolfo Puglia, George Mylonakis, George Athanasopoulos, and Vasil Vlahakis, "Preliminary Report on the Seismological and Geotechnical Aspects of the April 6 2009 L'Aquila Earthquake in Central Italy (Version 1.0) 6 April 2009 Italian Earthquake", Report of the National Science Foundation-Sponsored GeoEngineering Extreme Events Reconnaissance (GEER) Team, Available at http://research.eerc.berkeley.edu/projects/GEER/
- Housner, G.W. (1952), "Spectrum Intensities of Strong Motion Earthquakes", *Proceedings of the Symposium of Earthquake and Blast Effects on Structures*, EERI, Los Angeles, California, 1952, 21-36.
- INGV 2009, http://portale.ingv.it/
- ITACA, Italian Accelerometric Archive (http://itaca.mi.ingv.it/ItacaNet ).
- Mollaioli F., Bruno S., Decanini L., Panza G.F. (2006) "Characterization of the dynamical response of structures to damaging pulse-type near-fault ground motions", *Meccanica* (2006) 41:23–46.
- RAN National Accelerometric Network DPC Dipartimento della Protezione Civile (http://www.protezionecivile.it).
- Somerville P.G., Smith N.F., Graves R.W., Abrahamson N.A., (1997) "Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity", Seismological Research Letters, January/February 1997, Vol.68, n.1.
- Uang, C. M. and V. V. Bertero (1988). "Implications of Recorded Earthquake Ground Motions on Seismic Design of Buildings Structures". *Report No. UCB/EERC-88/13*, Earthquake Engineering Research Center, University of California at Berkeley.
- Uang, C. M. e V. V. Bertero (1990). "Evaluation of seismic energy in structures". *Earthquake Engineering* and Structural Dynamics, **19**, 77-90.