

di Ingegneria Sismica e Strutturale

Convegno ReLUIS

Progetto DPC_ReLUIS 2022-2024
Esposizione delle attività svolte e prospettive

Roma, 7 novembre 2023

WP 2 - Inventario delle tipologie strutturali ed edilizie esistenti- CARTIS

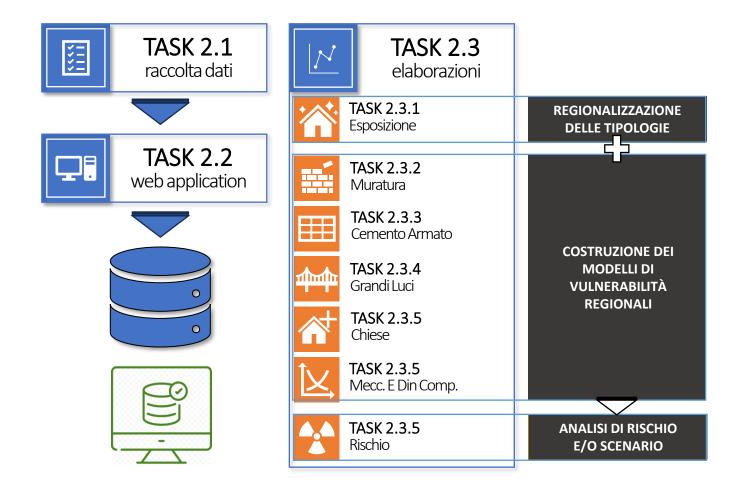
Prof. Arch. Giulio ZUCCARO

TASK 2.1. Schede CARTIS: attività di rilievo e raccolta dati in apposito database

Sviluppo di nuove attività di indagine attraverso le schede

TASK 2.2. Sviluppo data base e implementazione dati

Manutenzione evolutiva e correttiva della web application CARTIS



TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

Sviluppo di analisi concernenti i modelli di vulnerabilità sismica sulla base delle informazioni raccolte nel database CARTIS.

ID	UNITÀ	REFERENTE
1	UNINA-A	Giulio ZUCCARO
2	UNICAL-A	Giovanni GARCEA
3	UNICH	Giuseppe BRANDO
4	UNINA-B	Antonio FORMISANO
5	UNINA-C	Raffaele LANDOLFO
6	UNINA-D	Giuseppe BRANDONISIO
7	UNIBO	Marco SAVOIA
8	UNIFE-A	Fabio MINGHINI
9	UNIFE-B	Nerio TULLINI
10	UNIRC	Paolo FUSCHI
11	UNICUSANO	Barbara FERRACUTI
12	IUAV	Anna SAETTA
13	UNINA-E	Andrea PROTA
14	UNIFI	Mario DE STEFANO
15	POLITO	Bernardino CHIAIA
16	UNIPA	Piero COLAJANNI
17	UNIPD-B	Maria Rosa VALLUZZI
18	UNIPG	Emanuela SPERANZINI
19	UNICAMPANIA	Gianfranco DE MATTEIS
20	UNIVPM	Stefano LENCI
21	UNIPD	Francesca DA PORTO
22	UNICAS	Maura IMBIMBO
23	UNIGE	Sergio LAGOMARSINO
24	POLIBA	Giuseppina UVA
25	UNIBAS	Vincenzo MANFREDI
26	UNIMOL	Carlo CALLARI
27	UNINA	Gerardo VERDERAME
28	POILIMI	Paola CARDANI
	-	TOTALE

	REFERENTE	TACK 2.1	TASK 2.2 web app				TASK 2.3			
ID UNITÀ		TASK 2.1 raccolta dati		esposizione	muratura	C. A.	grandi luci	chiese	mecc. e din.	rischio
				2.3.1	2.3.2	2.3.3	2.3.4	2.3.5	2.3.6	2.3.7
1 UNINA-A	Giulio ZUCCARO	(R)	(R)	Х	Х			(R)		Х
2 UNICAL-A	Giovanni GARCEA	×			X	X	Χ	×	(R)	X
3 UNICH	Giuseppe BRANDO	x	Χ	X	X			Х	<u> </u>	(R)
4 UNINA-B	Antonio FORMISANO	x	Χ		(R)		X	Х		X
5 UNINA-C	Raffaele LANDOLFO	x	Χ				Х			X
6 UNINA-D	Giuseppe BRANDONISIO	×			Χ			X	X	Χ
7 UNIBO	Marco SAVOIA	x			Χ		X	Х		
8 UNIFE-A	Fabio MINGHINI	×					Χ		X	
9 UNIFE-B	Nerio TULLINI	×					Χ		X	
10 UNIRC	Paolo FUSCHI	×								
11 UNICUSANO	Barbara FERRACUTI	×				X		Χ		
12 IUAV	Anna SAETTA	×				X				
13 UNINA-E	Andrea PROTA	x		(R)		X			X	(R)
14 UNIFI	Mario DE STEFANO	×			Χ	X	Χ		X	×
15 POLITO	Bernardino CHIAIA	×				X				
16 UNIPA	Piero COLAJANNI	×		X						
17 UNIPD-B	Maria Rosa VALLUZZI	×			Χ					
18 UNIPG	Emanuela SPERANZINI	x			Χ					
19 UNICAMPANIA	Gianfranco DE MATTEIS	x						(R)		
20 UNIVPM	Stefano LENCI	×		(R)				<u> </u>	X	
21 UNIPD	Francesca DA PORTO	×			Χ					
22 UNICAS	Maura IMBIMBO	×			X					
23 UNIGE	Sergio LAGOMARSINO	x			(R)			Χ		
24 POLIBA	Giuseppina UVA	×			X	(R)				
25 UNIBAS	Vincenzo MANFREDI	X				X				
26 UNIMOL	Carlo CALLARI	x			Χ					
27 UNINA	Gerardo VERDERAME	x				(R)				
28 POILIMI	Paola CARDANI	X			Χ					
	TOTALE	28/28	4/28	5/28	15/28	9/28	7/28	9/28	7/28	7/28

TASK 2.1. Schede CARTIS: attività di rilievo e raccolta dati in apposito database

REFERENTI:

Prof. Arch. Giulio ZUCCARO Ing. Daniela DE GREGORIO

OBIETTIVO:

Sviluppo di nuove attività di indagine attraverso le schede

ATTIVITÀ:

- Nuova raccolta dati attraverso la compilazione della scheda CARTIS;
- Nuova raccolta dati attraverso la compilazione della scheda CARTIS EDIFICIO;
- Nuova raccolta dati attraverso la compilazione della scheda CARTIS GRANDI LUCI;
- Sperimentazione della scheda CARTIS CHIESE.

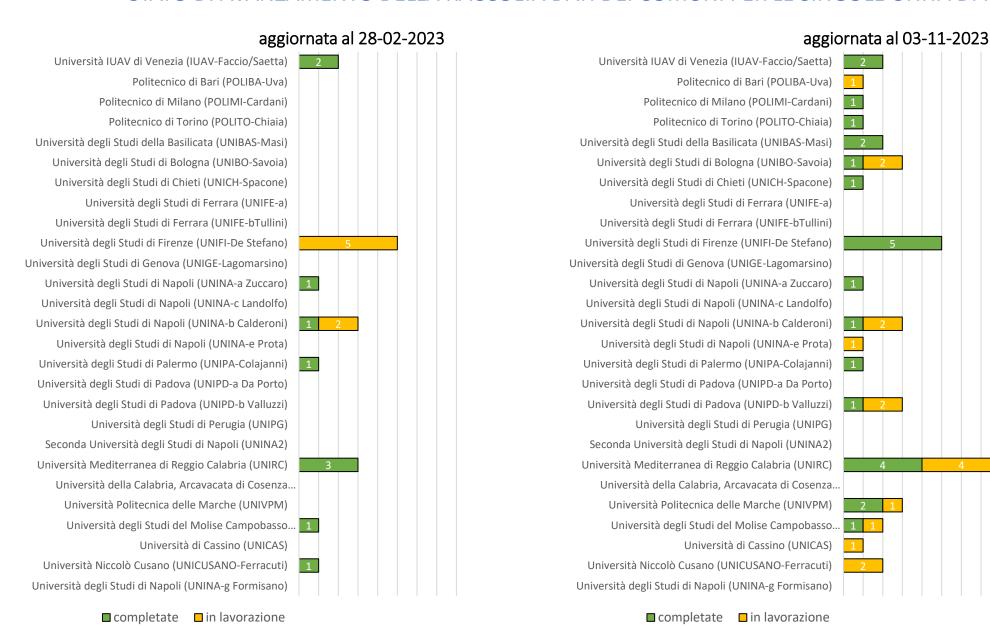
TREND RELATIVO ALLA RACCOLTA DATI SUI COMUNI DAI PRIMI DATI PRESENTI IN PIATTAFORMA

OBIETTIVO RACCOLTA DATI

Nuova raccolta dati attraverso la compilazione della scheda CARTIS (Annualità I e II)

Per ciascuna delle annualità previste, le UR si impegneranno a sviluppare nuove analisi di valutazione dell'edificato ordinario, attraverso la compilazione della scheda CARTIS di almeno 2 Comuni (o, in alternativa, di un numero di Comuni con una popolazione complessiva di almeno 15.000 abitanti) e la conseguente immissione dati nella apposita web application.

rimodulazione dell'attività sui 2 anni, tenendo conto dei punti emersi durante la riunione del 06.03.2023 relativi ai comuni di grandi dimensioni:


Le attività di analisi di valutazione dell'edificato ordinario attraverso la compilazione e l'immissione nella web application della scheda CARTIS da svolgersi durante i due anni di progetto possono riguardare:

- Quattro comuni rilevati in due annualità
- Tre comuni rilevati di cui almeno uno con più di 15.000 abitanti
- Due comuni rilevati aventi entrambi più di 15.000 abitanti
- Un comune rilevato con almeno 30.000 abitanti NUOVO

STATO DI AVANZAMENTO DELLA RACCOLTA DATI DEI COMUNI PER LE SINGOLE UNITÀ DI RICERCA

STATO DI AVANZAMENTO DELLA RACCOLTA DATI DEI COMUNI PER LE SINGOLE UNITÀ DI RICERCA

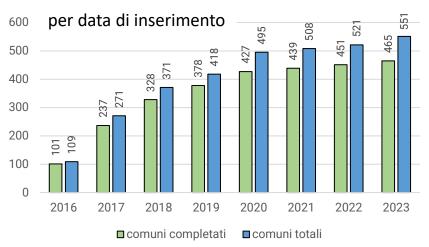
https://docs.google.com/spreadsheets/d/1wTHitlxkjYyo2dO_5bS1LGCdDQYle Ela/edit#gid=1404838156

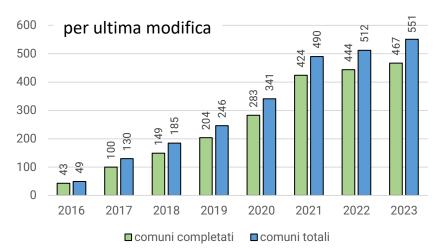
id	unità di ricerca	comune	rilievo	abitanti	data compilaz.	stato	info	
	Università degli Studi di Genova (UNIGE- Lagomarsino)	Genova	non rilevato	586,180				
12							OK	
	Università degli		non rilevato	4,748				
14	_						NB!	
	Università degli	Perugia	già rilevato	162,449				
29							OK	
	II.	Sorrento		16,563	24/2/2023	COMPLETATO		
13	Università degli Studi di Napoli	Pozzuoli	già rilevato				OK	
	(UNINA-a Zuccaro)							

Per monitorare lo **stato di avanzamento** delle attività di ricerca ed il raggiungimento dell'obiettivo prefissato per la **raccolta dati**, è stato chiesto alle UR di indicare **i comuni che intendono rilevare entro la fine del progetto** seppure l'attività non risulta ancora avviata sulla piattaforma.

STATO DI AVANZAMENTO DELLA RACCOLTA DATI DEI COMUNI PER LE SINGOLE UNITÀ DI RICERCA

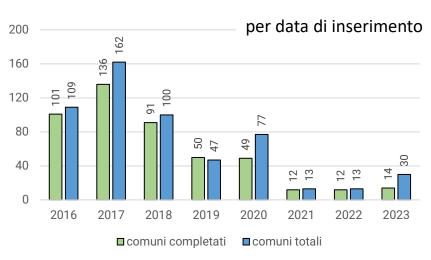
Dettaglio dell'attività di raccolta dati svolta dall'inizio del progetto									
DEMOGRAFIA DEL COMUNE COMPLETATO IN LAVORAZIONE EXCEL TOTALE									
meno di 15.000 abitanti	23	11	16	50					
tra i 15.000 ed i 30.000 abitanti	2	1	0	3					
più di 30.000 abitanti	1	3	1	5					
TOTALE	26	15	17	58					


Dettaglio dei Comuni con oltre 30.000 abitanti									
UNITÀ DI RICERCA	COMUNE	ABITANTI	STATO						
Politecnico di Bari (POLIBA-Uva)	Bisceglie	54.678	IN LAVORAZIONE						
Università degli Studi di Genova (UNIGE-Lagomarsino)	Genova	586.180	EXCEL						
Università degli Studi di Palermo (UNIPA-Colajanni)	Bagheria	54.257	COMPLETATO						
Università di Cassino (UNICAS)	Cassino	33.658	IN LAVORAZIONE						
Università Niccolò Cusano (UNICUSANO-Ferracuti)	Fondi	37.180	IN LAVORAZIONE						



TREND RELATIVO ALLA RACCOLTA DATI SUI COMUNI DAI PRIMI DATI PRESENTI IN PIATTAFORMA

TREND CUMULATIVO





NB: I grafici per *data di inserimento* mostrano l'inizio dell'attività, mentre i grafici per *ultima modifica* sono rappresentativi della chiusura dell'attività.

- I primi anni del progetto CARTIS erano centrati esclusivamente sulla raccolta dati. Nel 2016-2017 è stata svolta la *digitalizzazione* relativa alla raccolta dati avvenuta anche nel 2014-2015.
- Nel 2021 è stata svolta l'attività del Sanity Check del database CARTIS;
- A valle del Sanity Check sono stati estratti i dati validati, e nel 2022 si è svolta prevalentemente attività di costruzione dei modelli di vulnerabilità;
- Nel 2023 l'attività di raccolta dati è nuovamente in crescita

TREND INCREMENTALE

TASK 2.2. Sviluppo database e implementazione dati

REFERENTI:

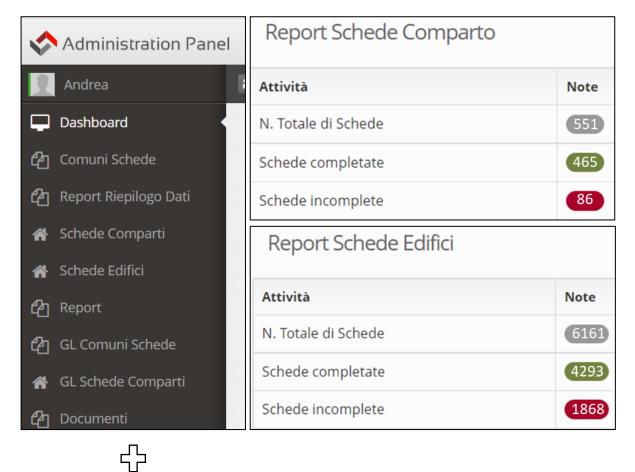
Prof. Ing. Francesco MARMO Ing. Andrea MONTANINO

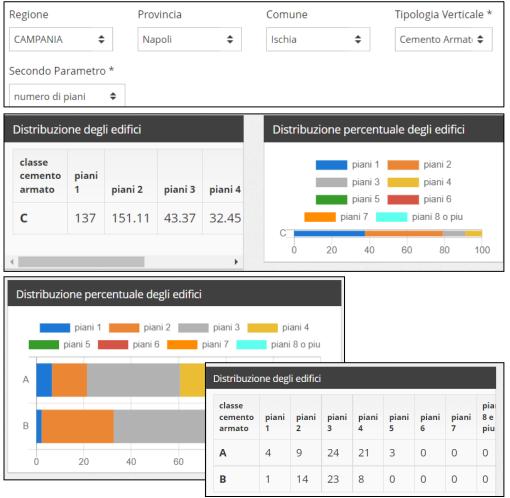
OBIETTIVO:

Manutenzione evolutiva e correttiva della web application CARTIS

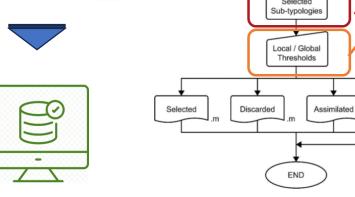
ATTIVITÀ:

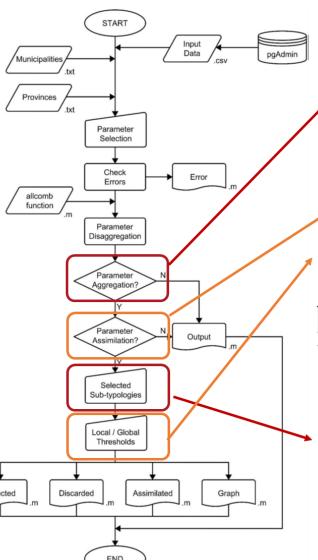
- Implementazione di interrogazioni sviluppate dalle UR;
- Implementazione della sezione scheda CARTIS CHIESE;
- Manutenzione della piattaforma.





http://cartis.plinivs.it





Per ridurre l'elevato numero di archetipi che si possono ottenere dalla disaggregazione, i parametri possono essere "aggregati", quando è possibile assumere che non alterino il comportamento sismico dell'edificio.

	-								
No. of		ion Period	Roof M		No. of	Construct	ion Period	Roof Mat	terial
buildings	<1860	1860-19	1/9 Brick	RC \	140. 01	Construct	ion i ciiou	/ ROOT IVIA	CITAL
417	417		417		buildings	<1860	1860-1919	Heavy	
105	105			105	522	522	(522	
417		417	417		522		522	522	
105		105		105		•	'		

Il sistema chiede se si vuole effettuare l'assimilazione tra alcune tipologie (yes/no).

Il processo di assimilazione viene effettuato considerando la differenza assoluta tra il tipo di edificio rappresentativo (cioè, frequenza >1%) e gli archetipo scartati (cioè, frequenza <1%) per il singolo parametro (soglia locale) e a livello globale (soglia globale), al fine di determinare quanto siano simili.

# Duilding tone	No. of		Number of stories				Construction age			
# Building type	buildings	1	2	3	4	<1860	1861-1919	1919-1945		
1 (relevant)	160	X	0	0	0	Х	0	0		
2 (not relevant)	70	0	0	X		0	X	0		
		lo	local threshold=2				shold=1			
			global threshold=3							
				3						

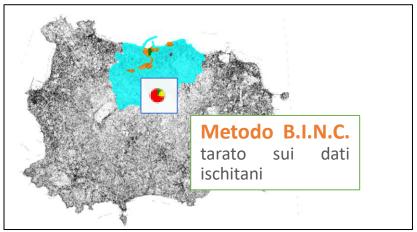
Indipendentemente dall'aggregazione e/o assimilazione dei parametri, all'utente viene chiesto di selezionare il numero di archetipi rappresentativi da includere nel portfolio di edifici rappresentativi.

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

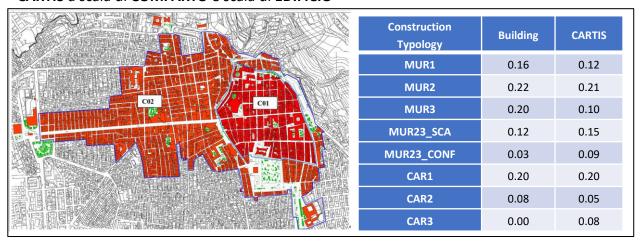
TASK 2.3.1 – Esposizione

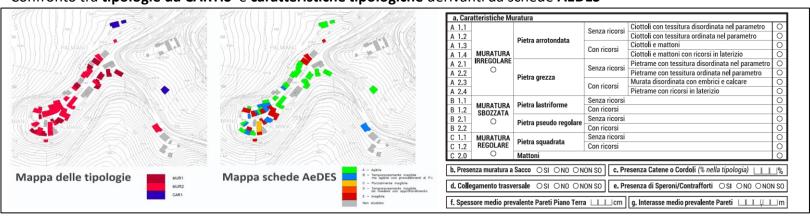
REFERENTI:

Prof.ssa Maria POLESE Prof. Stefano LENCI

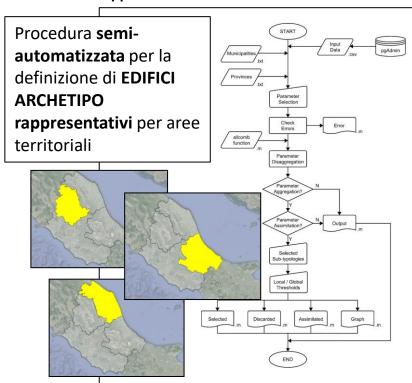

OBIETTIVI:

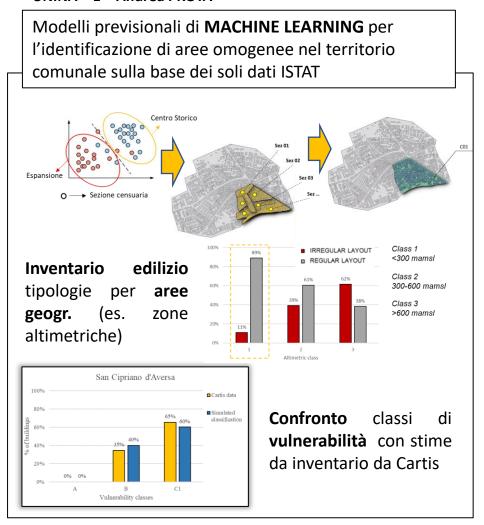
- Valutazioni di affidabilità del database CARTIS sulla base delle informazioni raccolte attraverso la scheda CARTIS EDIFICIO e/o da altre campagne di raccolta dati o sistemi informativi georeferenziati.
- Regionalizzazione delle tipologie edilizie prevalenti




UNINA A – Giulio Zuccaro
Distribuzione CLASSI DI VULNERABILITÀ da SCHEDE CARTIS
COMPARTO

UNIPA – Piero Colajanni
Confronto fra STIME DI ESPOSIZIONE, vulnerabilità e distribuzione del danno su database
CARTIS a scala di COMPARTO e scala di EDIFICIO


UNIPVM – Stefano Lenci Confronto tra tipologie da CARTIS e caratteristiche tipologiche derivanti da schede AEDES



UNICH – Giuseppe Brando

→ sviluppo di un modello di regionalizzazione

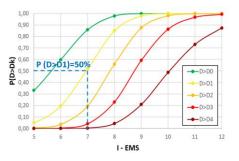
UNINA - E - Andrea PROTA

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

TASK 2.3.2 – Vulnerabilità delle tipologie in muratura

REFERENTI:

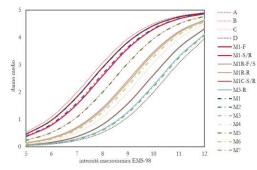
Prof. Antonio FORMISANO Prof. Sergio LAGOMARSINO



OBIETTIVI:

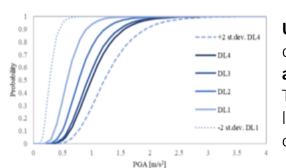
• Catalogo di modelli di vulnerabilità (classi e curve) a scala locale per classi tipologiche in "muratura" costruite sulla base del database CARTIS, attraverso: metodi meccanici su modelli costruiti nel rispetto delle caratteristiche tipologico-strutturali definite attraverso il DB CARTIS; metodi empirici sulla base di database di danno disponibili (ad es. DADO, PLINIVS, etc.); metodi ibridi.





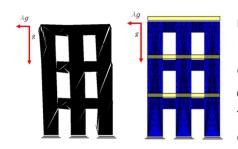
UNIMOL (Callari)

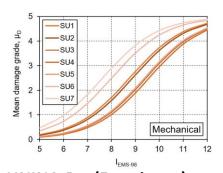
valutazione della vulnerabilità sismica delle tipologie costruttive in muratura del Molise attraverso un'applicazione al comune di Montelongo POLIMI (Cardani) - perdita di performance degli edifici storici con lo studio del fattore di sicurezza globale per una data tipologia al variare della situazione topografica e della tipologia di suolo



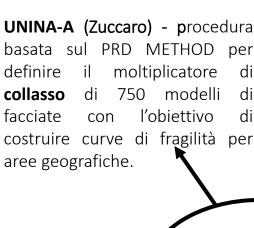
UNIPG (Speranzini) - capacità di edifici in muratura appartenenti a diversi comuni umbri al variare della qualità muraria per determinare curve di fragilità meccaniche

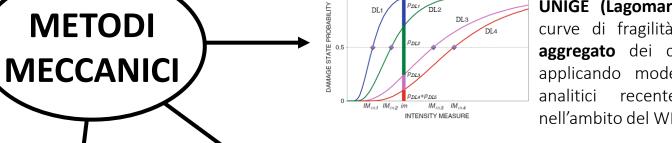
UNIPD a/b (Da Porto, Valluzzi)

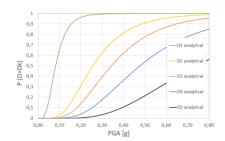

- vulnerabilità sismica del costruito mediante **metodo macrosismico**, anche considerando **l'effetto degli interventi** eseguiti dopo il sisma del 1976 sul comune friulano di Tolmezzo



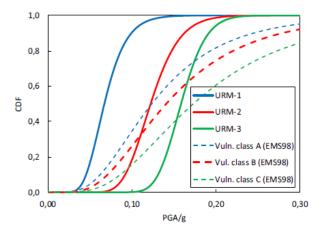
UNIFI (De Stefano) - valutazione della vulnerabilità sismica edifici in aggregato nell'area della Alta Val Tiberina, l'area della Garfagnana e l'area di Firenze città metropolitana con la sua provincia



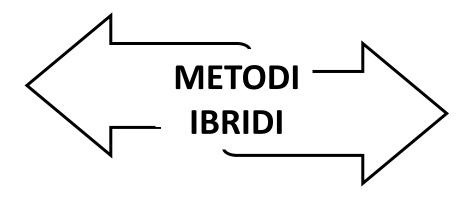


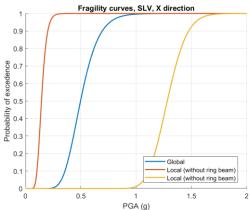

UNINA-B (Formisano) analisi meccaniche edifici in aggregato comune di Mirandola (MO) con la finalità di sviluppare fragilità curve meccaniche ed analisi empirico-meccaniche Castelpoto (BN) con l'intento di valutare l'affidabilità della metodologia speditiva di investigazione

UNIGE (Lagomarsino) - sviluppo di curve di fragilità per gli edifici in aggregato dei centri storici liguri, applicando modelli di vulnerabilità analitici recentemente aggiornati nell'ambito del WP4 MARS


UNICH (Brando) - analisi su edifici archetipo abruzzesi con la finalità di sviluppare curve di fragilità meccaniche per

meccanismi locali


UNIBO (Savoia) - vulnerabilità di edifici in muratura di pietra dei comuni di Vezzano sul Crostolo (RE) e Alto Reno Terme (BO) con l'obiettivo di sviluppare curve di fragilità mediante metodologia speditiva RE.SIS.TO



UNINA-D (Calderoni) - studio di una metodologia ibrida per definire le curve di fragilità per la valutazione della vulnerabilità sismica su scala territoriale o regionale, basata sulla combinazione del giudizio di esperti e di approcci meccanici.

POLIBA (Uva) - analisi di vulnerabilità sismica per le tipologie in muratura basandosi su approcci tipologicomeccanici su edifici archetipo e tipologie in aggregato per la definizione di curve di fragilità, anche con riferimento a meccanismi locali.

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

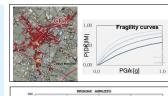
TASK 2.3.3 – Vulnerabilità delle tipologie in Cemento Armato

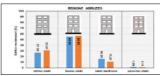
REFERENTI:

Prof.ssa Giuseppina UVA Prof. Gerardo VERDERAME

OBIETTIVI:

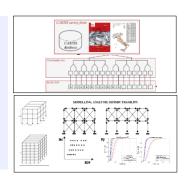
 Catalogo di modelli di vulnerabilità (classi e curve) a scala locale per classi tipologiche in "cemento armato" costruite sulla base del database CARTIS, attraverso: metodi meccanici su modelli costruiti nel rispetto delle caratteristiche tipologico-strutturali definite attraverso il DB CARTIS; metodi empirici sulla base di database di danno disponibili (ad es. DADO, PLINIVS, etc.); metodi ibridi.


Utilizzo DB Cartis per valutazioni di vulnerabilità e derivazione curve di fragilità dell'edilizia in ca


>APPROCCI DIRETTI, TIPOLOGICO-MECCANICI

APPROCCI INDIRETTI, EMPIRICI (2 UR)

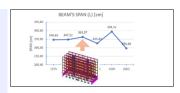
1. UR 12 UNIFI: Procedura basata sulla **EMS98** e la conoscenza delle caratteristiche dell'edificato da schede CARTIS. È stata sviluppata prima a scala di comparto, in corso di estensione all'intera area della Garfagnana.

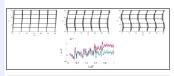


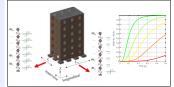
2. UR 28 UniCusano: Definizione di curve di fragilità da parametri desumibili dalla scheda Aedes (DaDO) per la regione Abruzzo e adattamento al contesto laziale, considerando anche lo **stato di conservazione**.

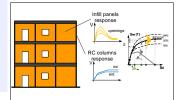
APPROCCI TIPOLOGICO-MECCANICI (7 UR)

- **1. UR 2 IUAV**: Applicazione del **metodo speditivo RE.SI.STO®** per derivare mappe di vulnerabilità: sistematizzazione DB Cartis, integrazione altre fonti. E' in corso l'automatizzazione della procedura.
- **2. UR 3 PoliBa**: Integrazione del DB Cartis con dati multisorgente e sviluppo di procedura automatizzata di curve di fragilità tramite **analisi cloud** di modelli generati da archetipi tipologici. Sono attualmente in corso le analisi cloud.






APPROCCI TIPOLOGICO-MECCANICI (7 UR)


- **3. UR 5 Polito**: Determinazione della **massima domanda sismica** dall'analisi di modelli virtuali generati utilizzando il DB Cartis in combinazione con curve geometria-età di elementi strutturali relative al contesto regionale.
- **4. UR 6 UniBas:** Raccolta e analisi dei parametri regionali ricorrenti in Basilicata da DB CARTIS e definizione di edifici tipo per effettuare modellazioni meccaniche, le quali sono attualmente in corso.
- **5. UR 8 UniCal:** Sviluppo di un modello ridotto per **l'analisi dinamica non-lineare** che ottimizzi accuratezza e costo computazionale a supporto di approcci di dettaglio per le valutazioni di fragilità
- 6. UR 18 UniNa-Prota: Derivazione curve di fragilità tipologiche da modelli stick generati con parametri geometrico-strutturali desunti da DB CARTIS, considerando l'interazione Tamponatura-Pilastro-Nodo (in fase di implementazione) e analisi cloud.
- 7. UR 19 UniNa-Verderame: Procedura di valutazione della fragilità basata sul metodo POST, adattato al contesto regionale attraverso le statistiche CARTIS. E' in corso la specializzazione del modello di tamponatura attraverso dati riferiti alla pratica costruttiva regionale.

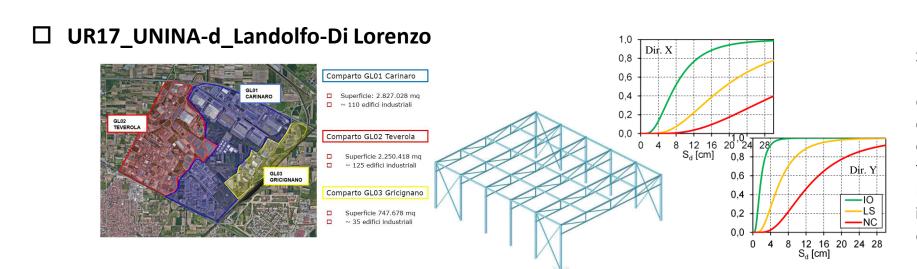
TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

TASK 2.3.4 – Vulnerabilità delle tipologie Grandi Luci

REFERENTI:

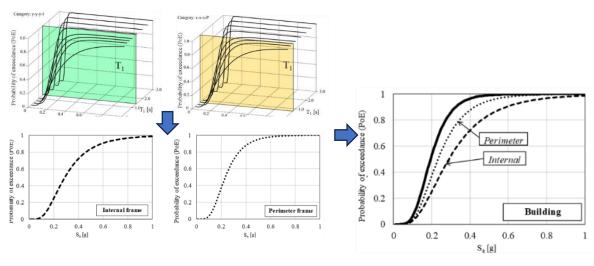
Prof. Raffaele LANDOLFO

Prof. Marco SAVOIA



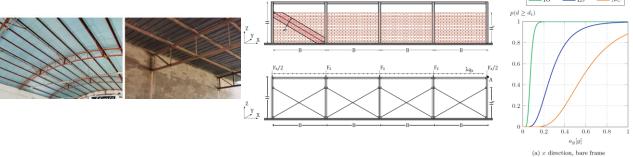
OBIETTIVI:

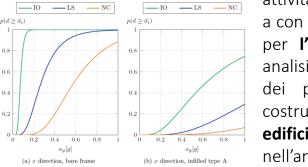
 Catalogo di modelli di vulnerabilità (classi e curve) a scala locale per classi tipologiche di "grande luce" costruite sulla base del database CARTIS, attraverso metodi meccanici, empirici o ibridi.

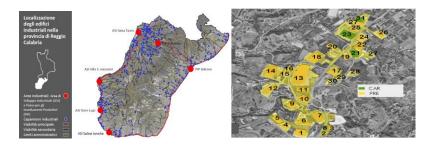


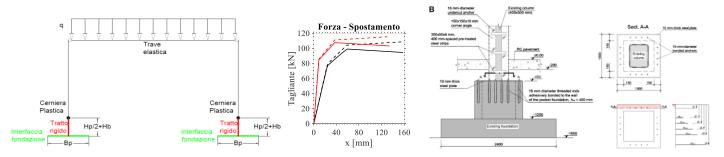
Studio all'area industriale ASI Aversa Nord (CE), con attenzione sull'analisi di **strutture in acciaio**, anche in collaborazione con l'UR27 UNINA-b, con l'obiettivo di definire curve di fragilità tipologiche ed implementare le medesime curve a seguito di **interventi di retrofit** mediante esoscheletri in acciaio

☐ UR7_UNIBO_Savoia




Studio di aree industriali di due Comuni dell'Appennino, quali Vezzano sul Crostolo (RE) e Alto Reno Terme (BO), investigando in particolare gli edifici prefabbricati in calcestruzzo armato ed applicando la metodologia PRESSAFE per lo studio della fragilità dei comparti industriali dei comuni analizzati.


☐ UR27 UNINA-b Formisano - UR8 UNICAL-a Garcea


attività di ricerca in collaborazione con l'UR8 UNICALa con la finalità di elaborare una procedura numerica per **l'analisi parametrica** (considerando mediante analisi Monte Carlo l'effetto di incertezze e variabilità dei parametri nella misura del danno) e la costruzione di curve di fragilità su base meccanica per **edifici industriali in acciaio tamponati** ricadenti nell'area industriale di Spezzano Albanese (CS).

☐ UR24_UNIRC_Fuschi

analisi di edifici di grande luce appartenenti a quattro area ASI (Area di Sviluppo Industriale) e due aree PIP (aree industriali previste dal Piano per gli Insediamenti Produttivi) della Provincia di Reggio Calabria

☐ UR10_UNIFE-a_Minghini - UR11_UNIFE-b_Tullini

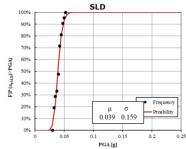
studio di edifici con **struttura prefabbricata in c.a.** nel comune di Finale Emilia (MO) colpiti dalla sequenza sismica del 2012 in Emilia ed investigando sia le tipologie di **intervento di miglioramento sismico** più diffuse nell'ambito della ricostruzione post-Emilia 2012 che lo studio dell'**interazione suolo-struttura** per tipologie a grande luce.

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

TASK 2.3.5 – Vulnerabilità delle Chiese

REFERENTI:

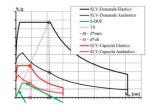
Prof.ssa Francesca DA PORTO Prof. Giulio ZUCCARO



OBIETTIVI:

 Catalogo di modelli di vulnerabilità (classi e curve) a scala locale per classi tipologiche di "chiese" costruite sulla base del database CARTIS, attraverso metodi meccanici, empirici o ibridi.

UNIPD (Da Porto – Valluzzi)


• Identificazione e analisi dei parametri che influenzano la vulnerabilità delle chiese partendo dalle informazioni disponibili all'interno del database DADO

• Costruzione di curve di fragilità tipologiche basate sui modificatori di vulnerabilità precedentemente individuati

Simulazioni Montecarlo

UNINA-D (Brandonisio)

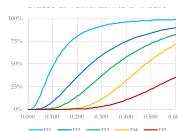
- Analisi meccaniche su chiese in C. A. con portale della cattedrale
- Costruzione di curve di fragilità

UNICH (Brando)

• Proposta di classificazione di fragilità sulla base della complessità strutturale

Le attività sulle CHIESE spaziano dalla costruzione dei modelli di vulnerabilità alla caratterizzazione

tipologica locale


- Implementazione della scheda CARTIS CHIESE sul Comune di Chieti;

UNICUSANO (Ferracuti)

- Analisi non lineare di rocking della facciata
- Analisi di laboratorio

UNINA-A (Zuccaro)

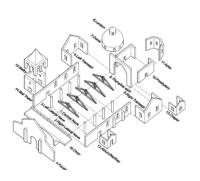
- sviluppo della scheda CARTIS CHIESE e CARTIS CHIESE EDIFICIO;
- Modelli vulnerabilità empirica per classi di altezza sulla base dei dati D.A.D.O.

UNICAMPANIA (De Matteis)

- Raccolta dati tramite schede CARTIS sui comuni della provincia di Caserta;
- Derivazione di curve vulnerabilità basate sull'indice di vulnerabilità

UNIGE (Lagomarsino)

 Focus sulla definizione del livello danno come combinazione dei danni associati ai singoli macroelementi ed ai possibili danni da meccanismo che possono subire


UNINA-B (Formisano)

- Schedatura tramite CARTIS CHIESE EDIFICIO di 20 strutture ecclesiastiche nel Comune di BONDENO;
- Statistica sulle tipologie e caratteristiche;
- Analisi meccanica su un caso studio

UNIBO (Savoia)

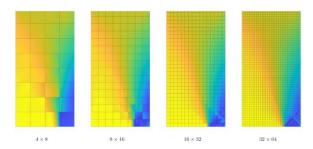
- Sperimentazione della scheda CARTIS CHIESE sul territorio di Ferrara
- Comacchio
- Modelli di vulnerabilità

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

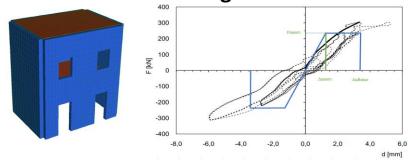
TASK 2.3.6 – Meccanica e dinamica computazionale applicata ad analisi di vulnerabilità regionali

REFERENTI:

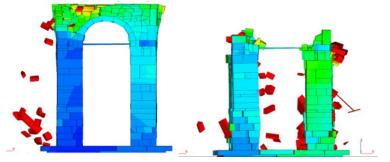
Prof. Fabio MINGHINI Prof. Giovanni GARCEA


OBIETTIVI:

• Analisi statiche e dinamiche di famiglie di strutture in muratura, cemento armato, grande luce e chiese soggette ad azioni sismiche allo scopo di fornire utili indicazioni allo sviluppo di curve di vulnerabilità delle tipologie edilizie definite attraverso il database CARTIS, specie con riferimento ai livelli di danno alti (D4 e D5)



UR8-UNICAL – G.Garcea


Modellazione accurata ed efficiente di pareti in c.a. e murature con elementi finite solid-shell

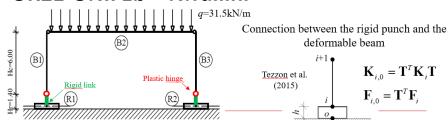
UR10-UNIFEa – F.Minghini

Ruolo dell'interazione solaio-parete nella formazione di meccanismi locali

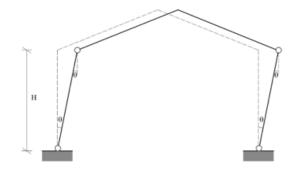
UR30-UNIVPN – S.Lenci

Analisi DEM di strutture in muratura calibrati con dati da monitoraggio dinamico

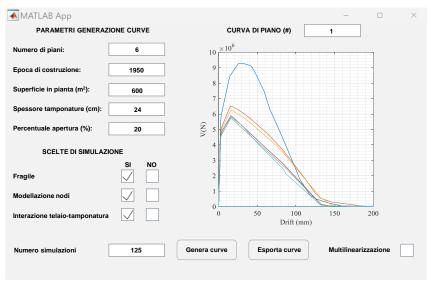
UR14-UNIFI – M.De Stefano



Studio del comportamento di una tipologia muraria del territorio della Garfagnana con modellazione numerica avanzata



UR21-UNIFEb – N.Tullini


Interazione suolo-struttura nella vulnerabilità sismica di edifici di grande luce

UR16-UNINA – G.Brandonisio

Calibrazione di un modello meccanico per l'analisi di chiese in c.a.

UR21-UNINA – Di Ludovico/Polese/Prota

Implementazione software del modello ridotto STICK

I modelli numerici sviluppati e calibrati nel Task 2.3.6 sono utilizzati per analisi di vulnerabilità regionali mediante l'interazione con gli altri Task del Progetto.

TASK 2.3. Utilizzo del DB CARTIS nella valutazione di modelli di vulnerabilità sismica

TASK 2.3.7 – Analisi di rischio a scala territoriale

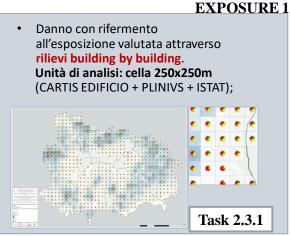
REFERENTI:

Prof. Andrea PROTA Prof. Giuseppe BRANDO

OBIETTIVI:

- Sviluppo di analisi di rischio a scala territoriale (comunale e regionale) con l'ausilio dei modelli di vulnerabilità (esposizione e vulnerabilità) desunti a partire dal database CARTIS dalla le curve di vulnerabilità.
- Comparazione dei risultati ottenuti con le analisi di rischio e scenario prodotte con la piattaforma IRMA.

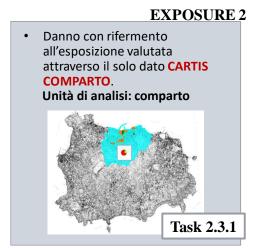
Edificio 4 - Tipologia D



Edifici ad uso

piani

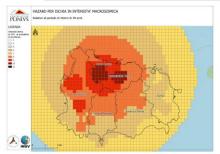
residenziale con 3

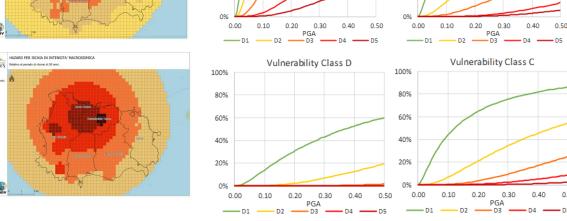

UR UNINA-a: G. Zuccaro

100%

80% 60%

40%

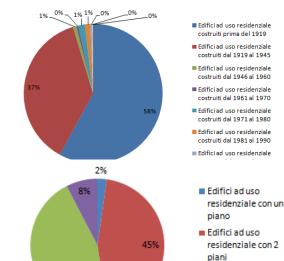


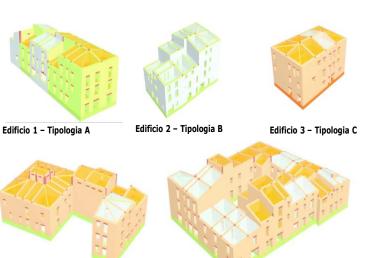

80%

60%

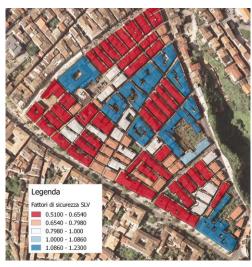
40%

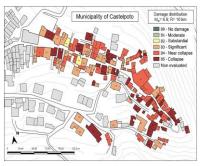
Vulnerability Class B

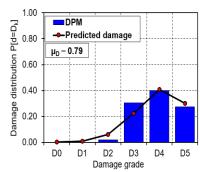


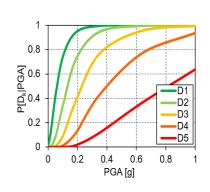


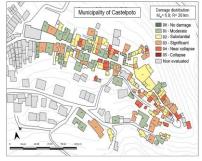
Vulnerability Class A

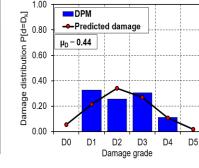

UR UNICAL: G. Garcea

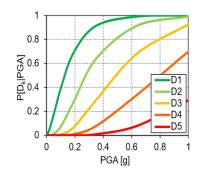

Edificio 5 - Tipologia E

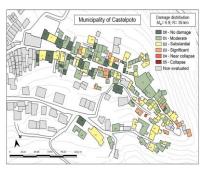


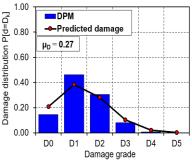


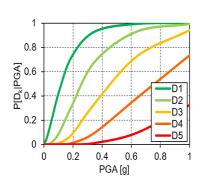


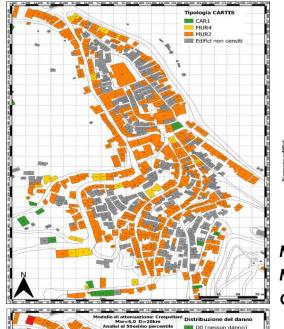

UR UNINA-b: A. Formisano

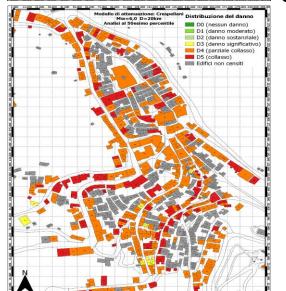


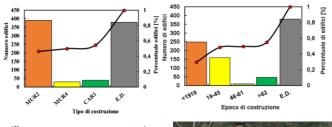


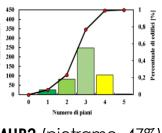




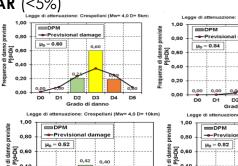


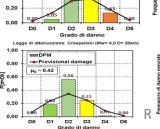


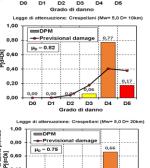




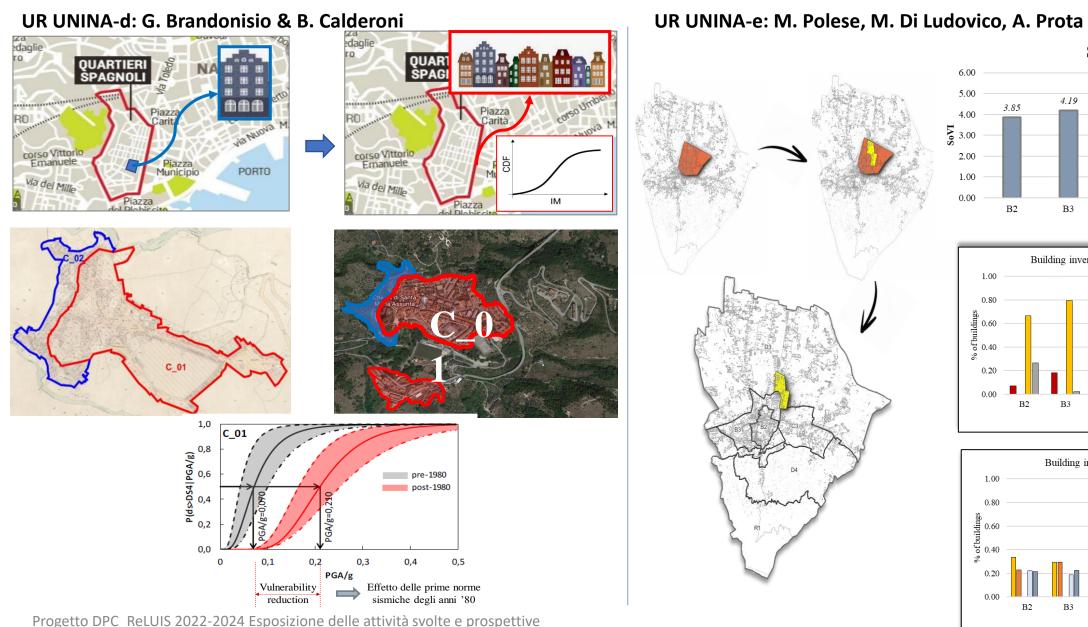
UR UNINA-c: R. Landolfo

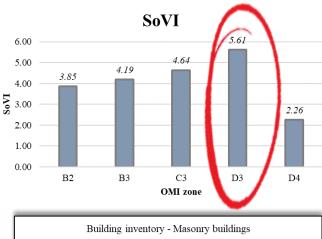




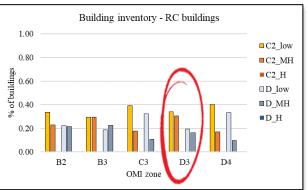


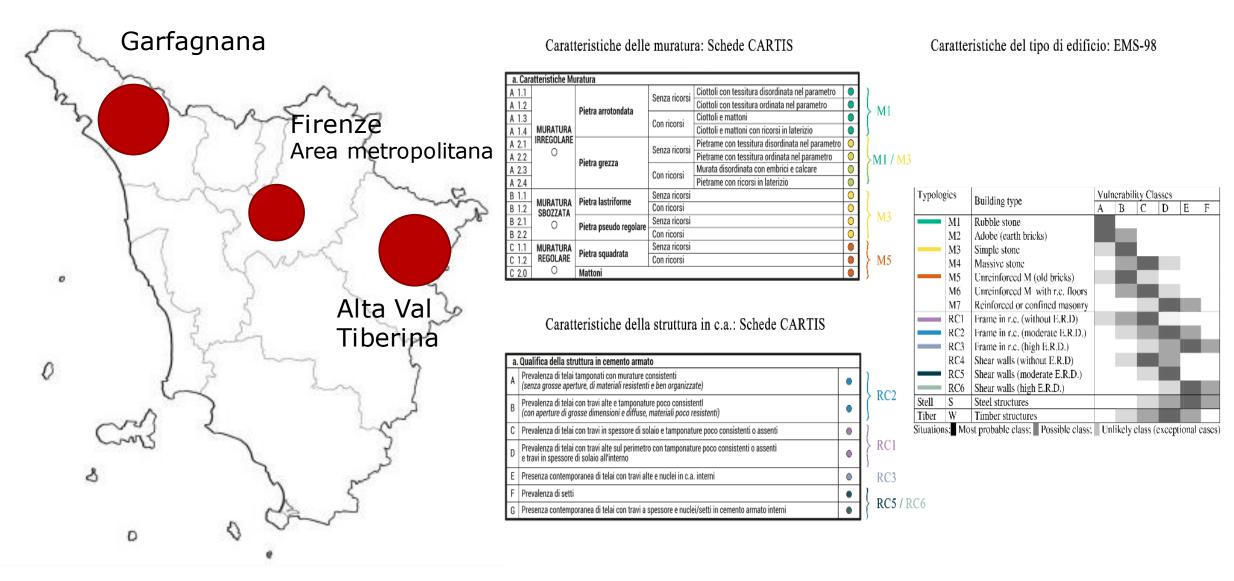
MUR2 (pietrame, 47%) MUR4 (pietrame, 4%)






Progetto DPC ReLUIS 2022-2024 Esposizione delle attività svolte e prospettive





UR UNIFI: resp. M. De Stefano

