

Convegno

La sperimentazione delle Linee Guida per i ponti esistenti

Accordo tra il CSLLPP ed il Consorzio ReLUIS attuativo dei DM 578/2020 e DM 204/2022

Roma 24 e 25 ottobre 2023

I DISPOSITIVI DI APPOGGIO

Angelo Masi

Accordo tra il CSLLPP ed il Consorzio ReLUIS attuativo dei DM 578/2020 e DM 204/2022

WP 4 SPERIMENTAZIONE SU COMPONENTI STRUTTURALI E/O SPECIALI TASK 4.2 - DISPOSITIVI DI APPOGGIO

(Coordinatore: Angelo MASI, Università della Basilicata)

Università di Pavia (con collab. IUSS)

Albero Pavese Simone Reale Ricardo Monteiro Mattia Calò

Università della Basilicata

Angelo Masi Giuseppe Santarsiero Valentina Picciano Antonio Musano

Politecnico di Torino

Giuseppe C. Marano
Bernardino Chiaia
Paolo Castaldo
Diego Gino
Rebecca Asso

Chiara Casarotti Marco Furinghetti Miriam Bazzini Cristina Curti

Università di Napoli «Federico II»

Giorgio Serino
Daniele Losanno
Mariacristina Spizzuoco

Casi emblematici: il viadotto Melandro (Basilicata, SS95var)*

- Ponte con impalcato in c.a.p.
- Lunghezza: 1200m con 36 campate da 32.5m
- Epoca di costruzione: 1985

Dissesto (2013)

- Scivolamento impalcati a causa della rottura degli appoggi a disco elastomerico confinato
- Danneggiamento delle testate delle travi e dei monaci

Casi emblematici: il ponte della Becca (Pavia) *

- Ponte con impalcato metallico e pile in muratura
- Lunghezza: 1040m con 13 campate
- Epoca di costruzione: 1912

Dissesto (2010)

- Rotazione pila n.9 per problemi fondazionali e idraulici
- Fuori sede cerniera metallica e cedimento del baggiolo

* fonte: Prof. Alberto Pavese (Università di Pavia)

La scheda di ispezione APPOGGI: valutazione dei DIFETTI

6	Appoggi N Strada di appa				Mims										
N°	Tecnico rilevat				Ministero delle infrastrutture e della mobilità sostenibili										
	Descrizione difetto	visto	G	0,2	0,5	1 1	0,2	tensità	K2	N° foto	PS	NA	NR	NP	Note
App_1	Piastra di base deformata		2								A				
App_2	Ossidazione	Ш	2		Ш	Ш	Ш	Ш	Ш			П	Ш		
Арр_3	Bloccaggio		4			-			-						
Арр_4	Preregolazione sbagliata		4												
App_5	Presenza di detriti		2												
Арр_6	Schiacciamento/Fuoriuscita lastre piombo		4												
Difetti d'appogg	gio in neoprene														
App_7	Invecchiamento neoprene		3												
App_8	Deformazione orizzontale eccessiva		4												
App_9	Schiacciamento/Fuoriuscita neoprene		4												
Difetti pendoli															
App_10	Ammoloramento pendoli in c.a.		4												
Арр_11	Fuori piombo permanente	Ш	4			Ш	Ш	Ш	Ш		Ш		Ш		
Difetti carrelli (n	metallici)														
App_12	Ovalizzazione rulli metallici		4												
Арр_13	Fuori sede rulli metallici		4												
Difetti di appogg	gio generici														
App_14	Deterioramento Teflon		3												
Eventuali note			_												

G = gravità del difetto su una scala da 1 a 5 (previsto max=4 per gli appoggi)

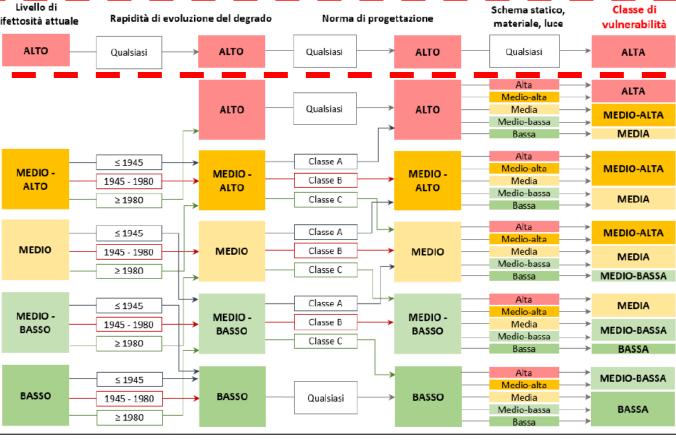
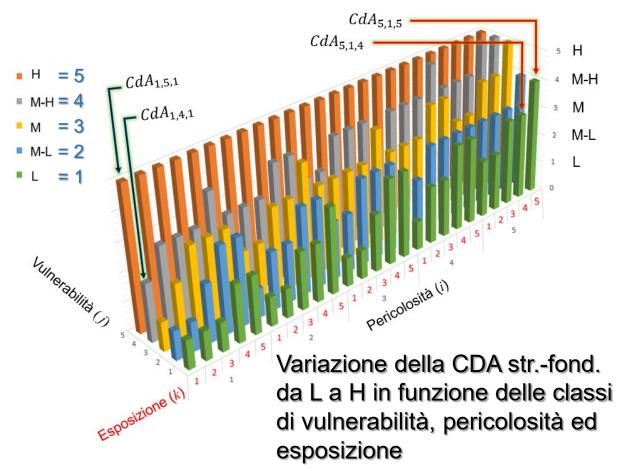

Impatto della difettosità degli appoggi sulla vulnerabilità strutturale-fondazionale

	Tabella 4.5. – Classificazione del livello di difettosità
ALTO	Difetti di gravità alta o medio-alta ($G=5 \ o \ G=4$) e di qualsiasi intensità su elementi critici (selle Gerber, appoggi, cavi di precompressione, fondazioni scalzate, si veda definizione del \S 3.3) o presenza di condizioni critiche (quadri fessurativi molto estesi ed intensi, cinematismi in atto, incipiente perdita di appoggio)
MEDIO-ALTO	Difetti di gracità alta o medio-alta (<i>G</i> =5 o <i>G</i> =4) e di intensità elevata su elementi la cui crisi può compromettere la statica di l'opera, come segnalato nella scheda di rilievo all'Allegato B
MEDIO	Difetti di gravità alta o medio-alta (G=5 o G=4) e di incensità elevata su elem compromettere il comportamento statico globale dell'opera e directi. Ni intensità medio-bassa Livello di difettosità attuale ALTO
MEDIO-BASSO	Difetti di gravità medio-alta (G =4) con intensità medio-bassa e difetti di gra G =2, G =1) e di qualsiasi intensità, in numero elevato
BASSO	Difetti di gravità media e bassa (G =3, G =2, G =1) e di qualsiasi intensità, in nu

Gli appoggi sono considerati elementi «critici» rispetto alla vulnerabilità strutturale-fondazionale

In presenza di difetti agli appoggi di gravità **G** = **4**, a cui si associa un **livello** di difettosità ALTO, la classe di vulnerabilità risulta sempre ALTA



Impatto della vulnerabilità sulla CDA strutturale-fondazionale

Indice di sensitività I

$$I = \frac{Somma\ incrementi\ di\ CDA}{Numero\ tot.\ di\ combinazioni}$$

Pericolosità
$$I_H = \frac{\sum_{i=2}^{5} \sum_{j=1}^{5} \sum_{k=1}^{5} \left(CoA_{i,j,k} - CoA_{i-1,j,k} \right)}{100} = 0.27$$

Vulnerabilità
$$I_V = \frac{\sum_{i=1}^{5} \sum_{j=2}^{5} \sum_{k=1}^{5} \left(CoA_{i,j,k} - CoA_{i,j-1,k} \right)}{100} = 0.74$$

Esposizione
$$I_E = \frac{\sum_{i=1}^{5} \sum_{j=1}^{5} \sum_{k=2}^{5} \left(CoA_{i,j,k} - CoA_{i,j,k-1} \right)}{100} = 0.31$$

La sensitività della CDA strutturale-fondazionale rispetto alla classe di vulnerabilità (I_V =0.74) è pari a circa 2.5 volte quella relativi agli parametri (pericolosità I_H =0.27, esposizione I_E =0.31)

Santarsiero, G.; Masi, A.; Picciano, V.; Digrisolo, A. *The Italian Guidelines on Risk Classification and Management of Bridges: Applications and Remarks on Large Scale Risk Assessments*. Infrastructures 2021, 6, 111.

WP 4 SPERIMENTAZIONE SU COMPONENTI STRUTTURALI E/O SPECIALI TASK 4.2 - Dispositivi di appoggio

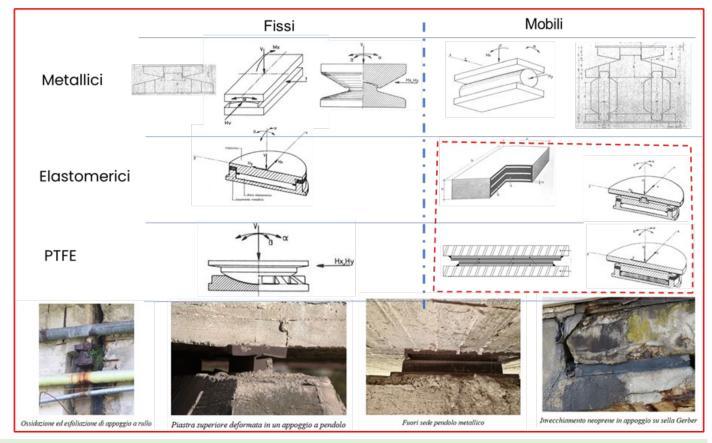
Articolazione del TASK 4.2

Il Task 4.2 è articolato in tre sub-task:

- 4.2.1 Stato dell'arte, catalogazione e classificazione
- 4.2.2 Modellazione
- 4.2.3 Sperimentazione

OBIETTIVI ed ATTIVITA

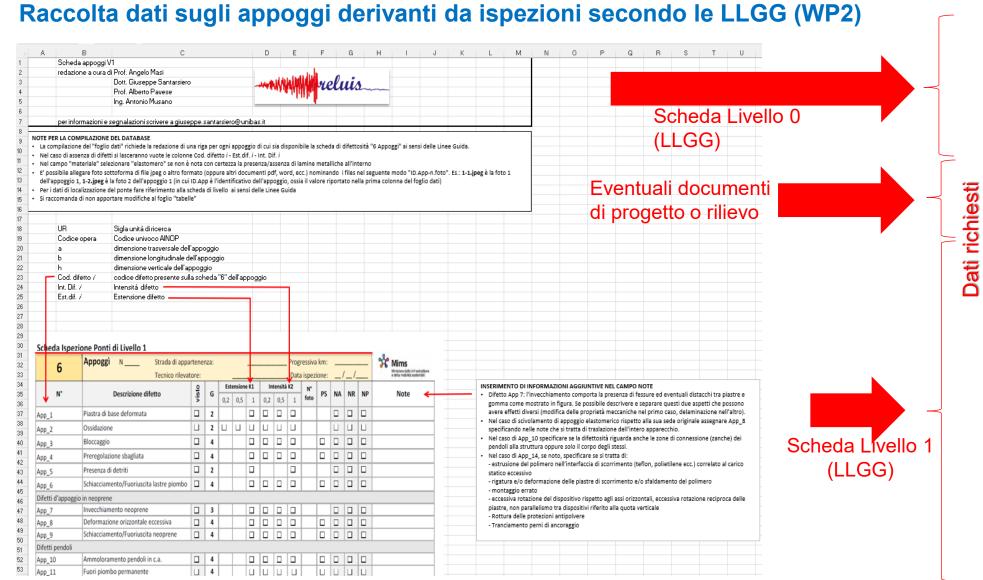
- Definizione di adeguati criteri di valutazione della difettosità, soprattutto per appoggi con degrado non facilmente rilevabile
- Eventuale aggiornamento/integrazione delle schede difettologica e/o di valutazione dei difetti incluse nelle Linee Guida
- Definizione di valori «realistici» delle azioni (soprattutto orizzontali da vento/frenatura) per la verifica degli appoggi
- Valutazione sperimentale e numerica delle prestazioni di appoggi degradati
- Valutazione del ruolo degli appoggi sul comportamento globale, attraverso analisi di ponti casi studio e definizione di curve di fragilità per componenti

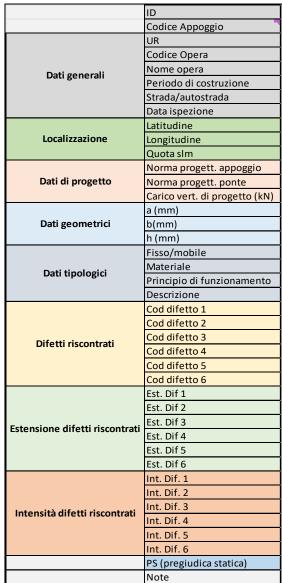


TASK 4.2.1 - Stato dell'arte, catalogazione e classificazione

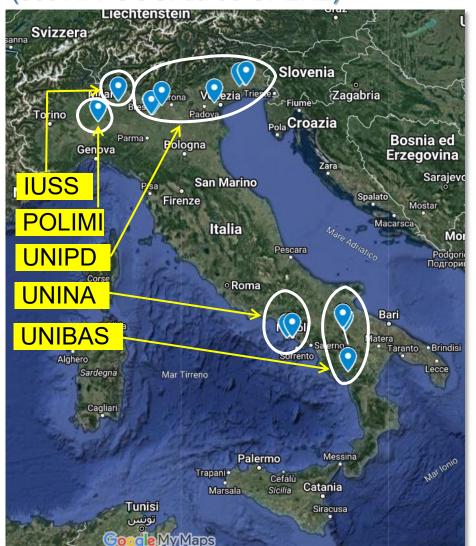
- Raccolta delle tipologie di appoggi presenti nei ponti esistenti, in particolare oggetto delle valutazioni ai sensi delle Linee Guida (WP2)
- Analisi dei metodi tipici di progettazione, sulla base delle normative, della manualistica, e della documentazione progettuale del periodo

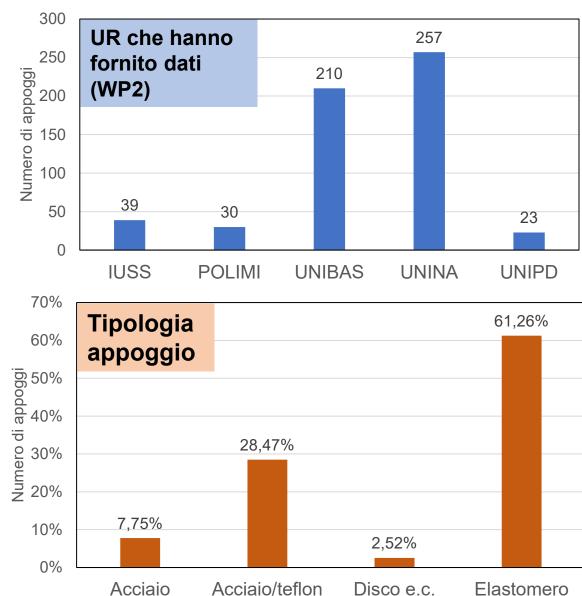
Collaborazione con gli enti gestori delle infrastrutture stradali al fine di ottenere:


- informazioni sulla presenza e distribuzione statistica dei dispositivi installati nelle strutture da ponte esistenti
- archivi storici delle difettosità rilevate in riferimento alla tipologia ed età degli appoggi, ed alle condizioni ambientali e di traffico



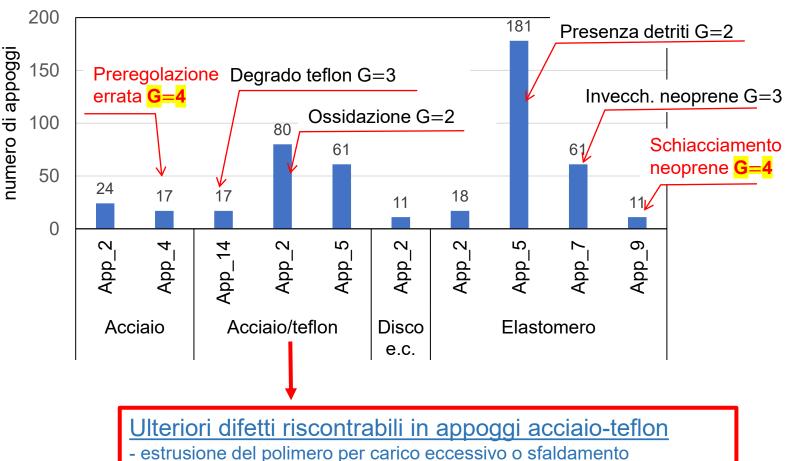
Scheda «Appoggi»





ANALISI PRELIMINARI DEL DATABASE (559 APPOGGI da 35 OPERE)

TASK 4.2 - Dispositivi di appoggio


Attività sub-task 4.2.1

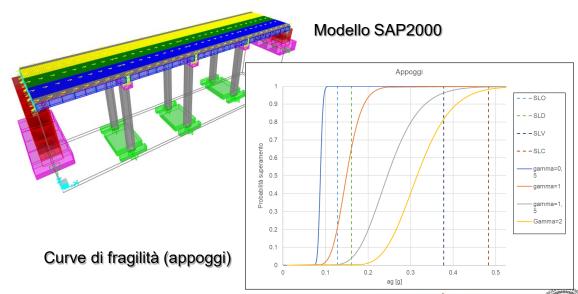
ANALISI PRELIMINARI DEL DATABASE (559 APPOGGI da 35 OPERE)

Scheda Ispezione Ponti di Livello 1

6	Appoggi N Strada di appa	rtene	nza:			
	Tecnico rileva	atore:				
N°	N° Descrizione difetto					
App_1	Piastra di base deformata		2			
App_2	Ossidazione		2			
App_3	Bloccaggio		4			
App_4	Preregolazione sbagliata		4			
App_5	Presenza di detriti		2			
App_6	Schiacciamento/Fuoriuscita lastre piombo		4			
Difetti d'appo	ggio in neoprene					
App_7	Invecchiamento neoprene		3			
App_8	Deformazione orizzontale eccessiva		4			
App_9	Schiacciamento/Fuoriuscita neoprene		4			
Difetti pendol	li					
App_10	Ammoloramento pendoli in c.a.		4			
App_11	Fuori piombo permanente	Ш	4			
Difetti carrelli	(metallici)					
App_12	pp_12 Ovalizzazione rulli metallici					
App_13	pp_13 Fuori sede rulli metallici					
Difetti di appo	oggio generici					
App_14	Deterioramento Teflon		3			
Eventuali note	e		Y			

- rigatura e/o deformazione delle piastre di scorrimento
- montaggio errato
- eccessiva rotazione del dispositivo
- rottura delle protezioni antipolvere
- tranciamento perni di ancoraggio

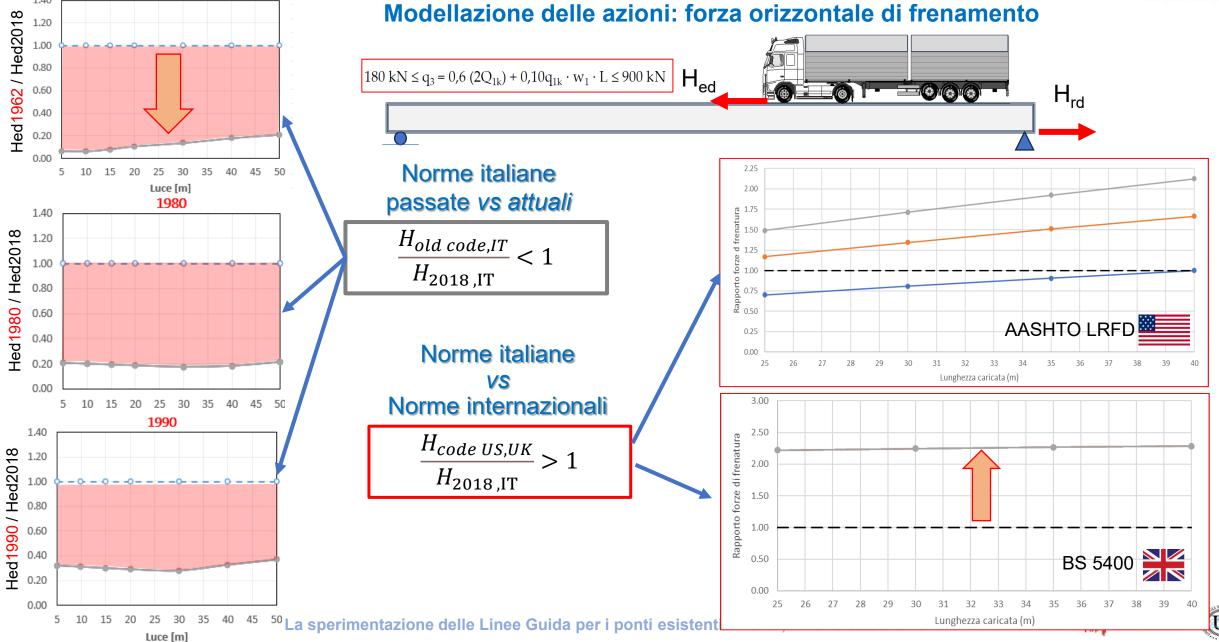
Task 4.2.2 Modellazione


- Ricognizione della letteratura riguardante le azioni di progetto dei dispositivi di appoggio in base alla normativa vigente all'epoca di progettazione. In particolare:
 - Analisi delle azioni statiche verticali indotte sui dispositivi confrontando le diverse normative nazionali durante la loro evoluzione, e parallelamente valutando le stesse azioni sulla base di altri codici tecnici internazionali
 - Azioni orizzontali di frenamento condizionanti il dimensionamento dei dispostivi di appoggio (nei ponti non progettati per sopportare azioni sismiche).
- Analisi di ponti casi studio sulla base di modelli di comportamento di appoggi degradati (anche basati sulle sperimentazioni svolte nel sub-task 4.2.3) per valutarne l'effetto sulle prestazioni globali (fragilità)

Analisi di casi studio (esempio UR UniPV)

Ponte ubicato in zona sismica 1

- 4 campate semplicemente appoggiate di lunghezza 12,5 m.
- Travi dell'impalcato realizzate in CA.
- Pile realizzate in CA con struttura a telaio caratterizzate da pilastri di sezione rettangolare 120 x 100 cm.
- Gli appoggi sono cuscinetti in neoprene con lamierino metallico



1962

TASK 4.2 - Dispositivi di appoggio

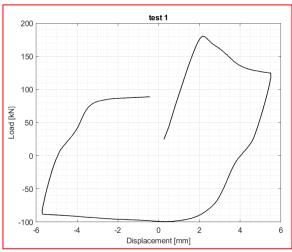
Attività sub-task 4.2.2

TASK 4.2 - Dispositivi di appoggio

Attività sub-task 4.2.3

Task 4.2.3 Sperimentazione

- Raccolta ed accurato esame visivo per identificare le problematiche tipiche che interessano gli appoggi estratti da ponti reali
- Test sperimentali su dispositivi degradati (anche artificialmente) e non degradati per valutare le prestazioni in presenza di degrado, e trarre indicazioni per la modellazione, mediante:
 - Esecuzione di **test su appoggi degradati** estratti da ponti esistenti al fine di esaminarne il comportamento e la capacità portante residua
 - Esecuzione di **test su appoggi nuovi**, da sottoporre successivamente ad invecchiamento artificiale
 - Esecuzione di test su **appoggi invecchiati artificialmente**, al fine di confrontare le prestazione con gli stessi appoggi nuovi



Appoggio acciaio-PTFE (test UR PoliTO)

Dati prova: Carico verticale 1700 kN, Attrito statico: 10.6%

Prove eseguite o programmate

- 11 appoggi estratti da ponti esistenti (7 acciaio-teflon + 4 neoprene, circa 50 anni di vita) ed esecuzione di 4 test
- 4 test su dispositivi POT nuovi (da ritestare dopo invecchiamento artificiale)
- 4 test su dispositivi in neoprene (da ritestare dopo invecchiamento artificiale)
- Reperimento di ulteriori 7 dispositivi da ponti esistenti (2 in acciaio, 3 in neoprene, 2 acciaio-teflon)

WP 4 SPERIMENTAZIONE SU COMPONENTI STRUTTURALI E/O SPECIALI TASK 4.2 - Dispositivi di appoggio

CONSIDERAZIONI FINALI

- Il Task 4.2 ha l'obiettivo di approfondire caratteristiche, prestazioni e ruolo dei dispositivi di appoggio presenti nei ponti italiani, attraverso attività di: (i) raccolta dati, (ii) classificazione tipologica e dei difetti, (iii) modellazione e sperimentazione dei dispositivi, (iv) modellazione ed analisi di casi studio rappresentativi di strutture reali
- Il flusso logico di assegnazione della Classe di Attenzione appare condizionato in maniera fortemente cautelativa dalla presenza di alcuni difetti negli appoggi
- I risultati dei test sperimentali e delle analisi di casi studio potrebbero fornire elementi utili riguardo il livello di gravità G assegnato ad alcuni difetti
- Confrontando le attuali norme italiane con quelle del passato, nonché con quelle internazionali, emergono differenze significative nei valori di progetto delle azioni da frenatura
- Con riferimento alla tipologia molto diffusa di appoggi in acciaio-teflon, la scheda di ispezione (Livello 1)
 potrebbe essere integrata considerando ulteriori tipologie di difetto e relativi livelli di gravità G
- Le schede difettologiche (Livello 1) in alcuni casi potrebbero essere rese più esplicative, rispetto all'assegnazione di estensione ed intensità del difetto, fornendo una rassegna di esempi di assegnazione

