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INTRODUCTION .
Seismic fragility curves describe the probability of 2
exceeding a specific damage level for a given asset c;;
based on a ground motion intensity measure (IM). ¢
Their derivation through observational approaches &

requires two key components: damage statistics
from post-earthquake surveys and the ground
motion IMs that caused the damage at each
building location (e.g., from ShakeMaps).
Estimating ground motion from observed damage is
challenging due to the limited availability of strong-
motion stations. As a result, ShakeMaps may lack

Superiore Universitaria di Pavia, Italy

seismic damage

Damage level: CROSS-VALIDATION — 2 approaches —» MEAN DAMAGE

~Slight il v
~Moderate Split data into 10 folds; From the damage database
~Substantial Fold 1 as testing set, Folds 2-10 as training set. calculate observed probability of each DS)

Probabilities calculated
act as weights for:

— ___—¥Destruction $ \ )

IM (PGA,PGV, etc.) A
esling se

Training setj

|dentify # of buildings Derive fragility curves
per DS

ﬂDj =0 Pasoobs +1 'PD51obS + 2 'Paszobs +
+ 3-Pps3,,. + 4 Ppsa,,, + 5 Ppss,,.
(Lagomarsino and Giovinazzi 2006)

[ Ipso
i ps1
[ lps2
[ lps3
[Ds4
I 0S5

Probability of reaching each DS

# of buildings

Plot against corresponding IM value:

Exceedance probability

constraints or be unavailable. T=3s I Eiﬂiiiii'
: - TE= 1 o
Recent advances in physics N N
based simulations (PBS) of 3D £ ” Calculate observed  Calculate estimated
. . . DS probabilities DS probabilities L
seismic wave propagation have using testing set Using training set h "7 o
improved their ability to ' 3 = 11 otim
. g . D - c .=
realistically estimate earthquake g < - 2 |\ Obssrved l
ground shaking and variability. By e x 8 Estimaton
solving the elastodynamics T & = i s | U SR E S ;_
equation, PBS generates ground ; 5
motion time histories that account W i =
for fault rupture, propagation - | S S L n(M)
’ 1 ) : up o
path, and regional geo- ———— AN - ‘—JMMN-W—— Compare observed vs estimated Calctlate'
; it babilities using WMSE SN
morphologlcal characteristics. Figure 2. 3D PBS of ground shaking (from Smerzini & Pitilakis 2012). PTODABITHES HEING Efficiency
(weights according to da Porto et al. (2021) Practicality
VALIDATION OF PBS: 2009 L’AQUILA EARTHQUAKE (MW6.2) Proficiency

Repeat with each fold l

In Rosti et al. (2023), the ground shaking fields obtained from 3D PBS, through the spectral ~ as the testing set in turn
element code SPEED (Mazzieri et al. 2013), were successfully exploited to derive - l .
observational fragility curves for several masonry and RC building typologies representative Average from al 'terat'oris for true prediction error

of the Italian building stock.
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Masonry Figure 5. IM’s optimality quantification and comparative analysis.

Results highlighted the geometric and weighted means of spectral acceleration to be
strongly correlated with building damage, aligning with previous research. Additionally.
for both masonry and RC buildings, PGA proved to be a reliable IM for seismic fragility
assessment, confirming the usefulness of acceleration-related measures for rigid
systems. Finally, among integral IMs, Houster Intensity performed best, while Arias
Intensity and Cumulative Absolute Velocity were less effective.
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Figure 3. Schematic representation for the derivation of observational fragility curves for the 2009 L’Aquila earthquake.
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