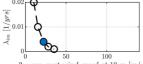


Progetto DPC-ReLUIS 2024-2026 WP3 Task 2 - Misure di intensità

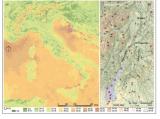
LE MISURE DI INTENSITA' NEI MODELLI DI FRAGILITA' PER PERICOLI NATURALI

I. Iervolino^{1,2}, P. Cito¹, G. Baltzopoulos¹, A. Belleri³, F. Biondini⁴, F. Da Porto⁵, B. Dal Lago⁶, P. Franchin⁷, S. Lagomarsino⁸, A. Larese⁵, E. Nigro¹, A. Penna², M. Repetto⁸, P. Riva³.


¹Università degli Studi di Napoli Federico II, ²Università degli Studi di Pavia, ³Università degli Studi di Bergamo, ⁴Politecnico di Milano, ⁵Università degli Studi di Padova, ⁶Università degli Studi dell'Insubria, ⁷Sapienza Università di Roma, ⁸Università di Genova.

- Identificazione, sulla base dello stato dell'arte, delle misure di intensità relative ai pericoli considerati.
- Valutazione della computabilità, nel senso della pericolosità, delle misure di intensità identificate e condivise con gli altri task del
- Interazione con task tassonomia per la raccolta delle misure di intensità selezionate per i vari pericoli (e.g., Fig. 1).

	pericolo?	disponibile?
1 Es. Moment flux	Risposte possibili:	Risposte possibili:
	□ Si	☐ Sito specifico
	□ No	☐ A livello regionale
	□ Non saprei	□ Non saprei
		☐ Altro: specificare
	Es. Moment flux	□ Si □ No


Fig.1: Stralcio di scheda per la raccolta delle informazioni ti per specifico pericolo relative alla misura di intensità selezi

La misura di intensità selezionata è la velocità media su dieci minuti a dieci metri, di tipo scalare e utilizzata per i venti sinottici. Essa è computabile dal punto di vista della pericolosità (e.g., Fig.2; Pandolfi et al., 2023).

- sec. gust wind speed at 10 m [m/s]Fig.2: Esempio di curva di peicolosità in termini di velocità media del vento su un intervallo di tempo (adattata da Pandolfi et al., 2023)

La analisi della letteratura recente mostra che, per tale misura di intensità, sono disponibili mappe di pericolosità per l'Italia alla scala nazionale (Fig. 3; Raffaele et al., 2024), per diversi periodi di ritorno.

3 TSUNAMI

Le principali misure di intensità, entrambe hazard computabili e scalari, sono due. Una è l'altezza massima dell'onda, rispetto cui sono state sviluppate curve di pericolosità per l'Italia a scala nazionale (Fig. 4; Basili et al., 2018).

L'altra è un indice I che combina altezza del tirante di acqua (h) e velocità del flusso (v): I=h*v^2. Approssima il momentum flux (e.g., 5; Volpe et al., 2019)

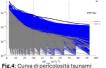


Fig.4: Curva di pericolosità tsuna in termini di momentum flux (adattata da Volpe et al., 2019).

La misura di intensità candidata per lo sviluppo delle curve di fragilità è il momentum flux. Tuttavia, studi di pericolosità alluvione per l'Italia sono quelli delle Autorità di Bacino (e.g., Fig. 6), che considerano altezza e velocità dell'acqua individualmente.

ralcio-di-bacino-del-distretto-idrografi nino-meridionale-per-lassetto-la-mitigazione-e-la

La misura di intensità candidata per lo sviluppo delle curve di fragilità è il momentum flux. Per tale pericolo, questa misura non è hazard-computabile: studi di pericolosità di letteratura considerano la profondità di erosione del terreno quale intensità (e.g, Fig. 7; Vidriales et al., 2022; Wang et al., 2014).

es et al., 2022; Wang et al.

6 COLATE/FRANE

Le misure di intensità candidate per esprimere le curve di fragilità sono altezza e velocità del flusso, considerate indipendentemente combinate in modo da ottenere il momentum flux. La letteratura mostra che le misure considerate nella analisi di pericolosità per colate/frane sono l'energia cinetica (e.g., Fig. 8; Lari et al., 2014), o la velocità e diametro del blocco (e.g., Mavrouli e Corominas, 2010).

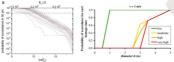


Fig.8: Esempi di cu 2014; Mavrouli e Corominas, 2010).

Curve di fragilità in momentum flux sono state sviluppate, (e.g., Fig. 9; Prieto et al., 2018) ma non risultano studi di pericolosità.

Fig.9: Esempi di curve di fragilità (adattata da Prieto et al., 2018)

7 LIQUEFAZIONE

La misura di intensità primaria selezionata per la liquefazione è la PGA. Tuttavia, è necessario tenere in conto anche altre misure di intensità (secondarie), quale, ad esempio, l'intensità di Arias (la) condizionata a un valore della misura primaria (e.g., Fig. 10; Iervolino et al., 2010)

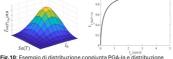


Fig.10: Esempio di distribuzione congiunta PGA-la e distribuzione

8 CEDIMENTO DEL TERRENO

La misura di intensità candidata per la fragilità è il massimo assoluto del Tuttavia, al momento non risultano disponibili in letteratura studi che forniscano valutazioni di pericolosità che adottino tale misura.

9 FUOCO

Le misure di intensità selezionate sono il carico termico e la potenza termica di picco, per le quali non sono disponibili curve di pericolosità.

In effetti, mentre esistono modelli di ignizione che potrebbero essere usati in un calcolo di rischio analitico (e.g., Fig. 11; Tan et al., 2023), la analisi di rischio incendio è basata principalmente su metodi qualitativi o calcolo di indici (e.g., Fig. 12).

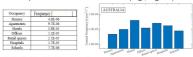
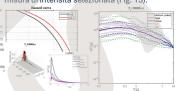



Fig12: Esempi di calcolo di rischio incendio (NFPA, 2000; Dow, 1994).

10 NaTECH

La misura di intensità considerata è la pseudoaccelerazione spettrale al periodo di vibrazione di dieci secondi, che consente sia il calcolo della pericolosità sismica che della fragilità sismica dei serbatoi. Nell'ambito delle attività del Task 2, sono quindi selezionati gli accelerogrammi compatibili con la pericolosità in termini della misura di intensità selezionata (Fig. 13)

11 SINTESI DELLE MISURE CANDIDATE

Pericolo	Misura di Intensità	Hazard-computabile secondo letteratura	Selezionata per fragilità
A1. Colate/frane	Indice combinazione altezza e velocità:	NO	SI
	Momentum flux	110	31
	Misura vettoriale (altezza, velocità)	NO	SI
	Diametro/velocità blocco di roccia	NO	
	Energia cinetica	SI	
A2. Cedimenti	Cedimento assoluto massimo	NO	SI
A3. Liquefazione	PGA, Sa(T), Intensità di Arias	SI	SI
B1. Tsunami	Altezza massima dell'onda	SI	
	Indice combinazione altezza e velocità:	SI	SI
	Momentum flux		
B2. Alluvione	Altezza dell'onda	SI	NO
	Indice combinazione altezza e velocità:	NO	SI
	Momentum flux	NO	
B3. Scalzamento	Scour depth	SI	
	Indice combinazione altezza e velocità:		SI
	Momentum flux	NO	51
C1. Venti sinottici	Velocità media 10min. 10m	SI	SI
D1. Incendio			
confinato (ed. civili e		NO	SI
industriali)			
D2. Incendio	Carico specifico di incendo		
Interfaccia			
D3. Jetfire			
E1. Tsunami	Altezza massima dell'onda/Momentum flux	SI	SI
E2, Terremoto	Sa(T)	SI	SI