

Task 2: Categorizzazione sismica del sottosuolo, fattori di Presidenza del Consiglio del Ministro Dipartimento della Protezione Civile amplificazione nella normativa e microzonazione sismica

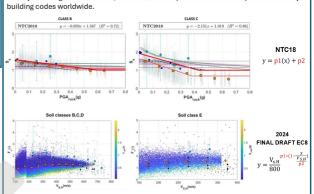
Hazard-dependent soil factors for site-specific elastic acceleration response spectra for Italian and European seismic building codes – an update from recorded

accelerograms

A.Famà¹, G.Andreotti², C.G. Lai³

¹Fondazione Eucentre, ²ARX Smart Minds, ³Università di Pavia

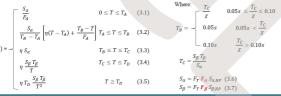
Bulletin of Earthquake Engineering https://doi.org/10.1007/s10518-025-02200-2


Most seismic building codes worldwide allow the definition of the seismic action (horizontal component of ground motion) using a simplified approach based on modifying the ordinates of an elastic acceleration or displacement response spectrum expected on outcropping bedrock through appropriate soil factors.

assessing the reliability of current Eurocode 8 and the Idalah building code (NICT8) soil factors using the results of a large number of numerical simulations. In this work the same authors update their 2018 study by including strong motion data from real recordings. Updated hazard-dependent soil factors for Eurocode 8 and the Italian building code (NTC18) are defined by complementing numerical and real ground motion data. The role of epistemic uncertainty in specifying soil amplification factors is highlighted also through a comparison with soil factors calculated from other international building codes (e.g. 2021 IBC and ASCE 7-16) and recent publications.

OVERVIEW

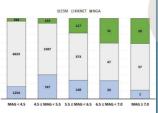
In 2018 the authors have published an article on Bulletin of Earthquake Engineering on assessing the reliability of current Eurocode 8 and the Italian building code (NTC18) soil


RESULTS New formulations of amplification factors are proposed in this study according to the approach prescribed by the Italian Building Code (NTC18) and the 2024 final draft of EC8 with different intensity measures considered. The parameters of empirical relationships were derived using the analytical formulation defined by two standards. Formulations of amplification factors proposed, obtained from an integrated dataset composed of real and synthetic ground motions, have been compared with those specified in major

SOIL FACTORS IN CURRENT BUILDING NTC18 STANDARDS

2024 FINAL DRAFT EC8

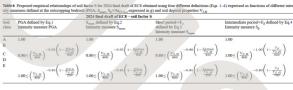
PROPOSAL OF UPDATE

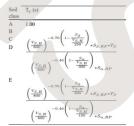

NTC18

	Italian building code NTC18 Soil factor Ss						
Soil class	Sa-max	Short period					
A	1.00	1.00					
В	$1.00 \le 1.72 - 0.36 \; F_0 \; a_g$	1.00≤1.88-0.46 F ₀ a					
C	1.00≤2.09-0.76 F ₀ a _g	1.00≤2.37-0.95 F ₀ a					
D	$0.80 \le 1.60 - 0.64 \text{ F}_0 \text{ a}_2$	$0.80 \le 1.20 - 0.45 \text{ F}_0 \text{ a}_s$					
Е	1.00≤2.28-0.72 F ₀ a _n	1.00≤2.02-0.68 F ₀ a					

class	1 _C (s)	$C_C = \frac{I_C}{T_C^*}$				
A	1.00	1.00				
В	0.093+0.703 Tc*					
C	0.119+0.905 Tc*					
D	0.252+0.558 Te*	0.753 Te*-0.523				
E	0.146+0.522 Tc*	0.529 Te*-0.527				

COMPOSITE DATASET OF GROUND MOTION

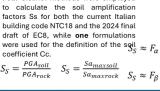

A composite dataset of weak and strongmotion recording has been constructed using three accelerometric archives: ESM using unive accelerometric archives: ESM (Lanzano et al. 2018), Kik-Net (Baharampouri et al. 2021), PEER-NGA West (Ancheta et al. 2013). The composite dataset includes recordings that were simultaneously recorded by pairs of seismic stations located at outcropping bedrock sites (i.e. soil class A) and at the ground surface (i.e. soil

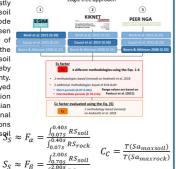


classes other than A).
To correct the potential differences in the strong motion data due to the source-to-site distances between soil and bedrock outcropping seismic stations, the recordings have been scaled using appropriate ground motion models (GMM).

	A-B			A-C			A-D			A-E		
	ESM	Kik-Net	Peer NGA	ESM	Kik-Net	Peer NGA	ESM	Kik-Net	Peer NGA	ESM	Kik-Net	Peer
Earthquakes	255	6419	186	189	5840	173	77	2369	18	92	0	38
Outcropping rock condition stations	71	68	113	65	67	113	39	50	105	48	0	42
Stations belonging to the soil class	153	389	907	107	175	696	9	14	88	16	0	55
Tot records	6296	112345	49764	3504	51954	26270	552	3062	2877	789	0	760
Records after criteria application	40	87	76	0	75	62	0	0	2	4	0	30
Total number of stations	203			137		2				34		

2024 FINAL DRAFT EC8





METHODOLOGY

A multi-parametric study that robustly calculated intensity-dependent soil amplification factor for building code applications. Strict criteria have been imposed to increase the accuracy of the results. The influence of the methodology used to define the soil amplification factors thereby investigating the epistemic uncertainty.

Four distinct methods were employed

RSrock

SELECTED REFERENCES

. Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BS, Wooddell KE, Graves E, Kottke AR,Boore Delta I. Baringan, Gleward I., Jeysland I., Javan W., Child V., Woodseld I., Grabes E., Rother N., Book M., Standard I., Donahue L. (2013) PEER NGA-West2 database. May 2013. https://peer.berkeleysedu/sites/default/files/2013_03_encheta_7.3.2020.pdf
Addrectiti, G., Famà, A. & Lai, C.G. Hazard-dependent soli factors for site-specific elastic acceleration response spectra of Italian and European seismic building codes. Bull Earthquake Eng 16, 5769-5800 (2018).

ttps://doi.org/10.1007/s10518-018-0422-9

Bahrampouri M, Rodriguez-Marek A, Shahi S, Dawood H. An updated database for ground parameters for KiK-net records. Earthquake Spectra. 2021;37(1):505-522. doi:10.1177/8755293020952 CEN (2024) Eurocode 8 – design of structures for earthwauek resistance – Part 1-1: General rules and seismic action. European standard (Ref. No. FprEN 1998-1–1:2024 E

Lanzano G. et al; 2018. Engineering Strong Motion Database (ESM) flatfile [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.1007/s10518-018-0480-z

Paolucci R, Aimar M, Ciancimino A, et al (2021) Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 part 1–1. Bull Earthq Eng 19:4199–4234. https://doi.org/10.10 07/s10518-021-01118-9

Sandıkkaya, M. A., & Dinsever, L. D. (2018). A site amplification model for crustal earthquakes. Geosciences, 8(7), 264. https://doi.org/10.3390/geosciences8070264

Seyhan E, Stewart JP. Semi-Empirical Nonlinear Site Amplification from NGA-West2 Data and Simulations Earthquake Spectra. 2014;30(3):1241-1256. doi:10.1193/063013EQS181M