

Progetto DPC-ReLUIS 2024-2026 WP 12

Sub Task 12.1.3: Edifici con ossatura leggera in profili sottili di acciaio formati a freddo

Progettazione sismica di Edifici con ossatura leggera in profili sottili di acciaio formati a freddo

R. Landolfo, M. D'Aniello, L. Fiorino, A. Prota, V. D'Addesa, A. Milone, R. Carlevaris, M. Cicia, M. Gnazzo

OBIETTIVI DELLA RICERCA:

- Analisi dello stato dell'arte nazionale ed internazionale
- Esame critico delle correnti Linee Guida alla luce degli avanzamenti emersi dall'analisi dello stato dell'arte
- Aggiornamento delle Linee Guida

1. Strap-braced

walls

Performance sismica di edifici con ossatura leggera in profili sottili di acciaio formati a freddo

PRINCIPALI SISTEMI SISMORESISTENTI 3. Shear walls with wood sheathing

3. Shear walls with gypsum sheathing

5. Special bolted moment frames

DISAMINA PRINCIPALI DOCUMENTI NORMATIVI PER LA PROGETTAZIONE SISMICA DI EDIFICI CON OSSATURA LEGGERA IN PROFILI SOTTILI DI ACCIAIO FORMATI A FREDDO

prEN 1998-1-2:2024 Eurocode 8: — Design of structures for earthquake Rules for new buildings European Committee for Standardization. Bruxelles, 2024

Sistemi sismoresistenti codificati

- > shear walls with steel sheet sheathing
- > shear walls with wood sheathing
- > shear walls with gypsum sheathing

Fattore di comportamento

1.5 (DC1) | 2.0 (DC2) | 2.5 (DC3) 1.5 (DC1) | 2.0 (DC2) | 2.5 (DC3) 1.5 (DC1) | 2.0 (DC2) | 2.5 (DC3)

1.5* (DC2) | 2.0 (DC3) 1.5 (DC1) | 1.7 (DC2) | 2.0 (DC3) 1.3* (DC2) | 2.0 (DC3)

> * Fattore amplificativo dell'effetto dell'azione sismica di progetto nell'elemento non-dissipativo.

Fattore di sovraresistenza

1.5* (DC2) | 1.1ω_{rm} (DC3)

ossibili tipologie di omportamento strutturale in ermini di duttilità: • DC1 (bassa dissipazione) • DC2 (media dissipazione) • DC3 (elevata dissipazione)

- Approccio di progetto: Basato su metodi analitici

Edition. American Iron and Steel

Institute, Washington, DC, 2020

- > strap braced walls
- > conventional strap braced walls
- > shear walls with steel sheet sheath
- > shear walls with wood sheathing
- > shear walls with gypsum sheathing
- > shear walls with wood and gypsum sheathing

- 2.47 (CAN) | 4.0 (USA&MEX) 1.56 (CAN)
- 2.6 (CAN) | 6.5-7.0 (USA&MEX)
- 4.25 (CAN) | 6.5-7.0 (USA&MEX)
- 2.55 (CAN) 3.5 (USA&MEX)

- R_v (CAN) | ≤1.8 (USA&MEX)
- 1.4 (CAN) | ≤1.8 (USA&MEX)
- 1.33-1.45 (CAN) | ≤1.8 (USA&MEX)
- 1.5 (USA&MEX)
- 1.33-1.45 (CAN) analytical method (USA&MEX)

ossibili tipologie di omportamento strutturale in termini di duttilità:

(solo per gli strap braced walls,

Approccio di progetto: Basato su metodi analitici e tabellari

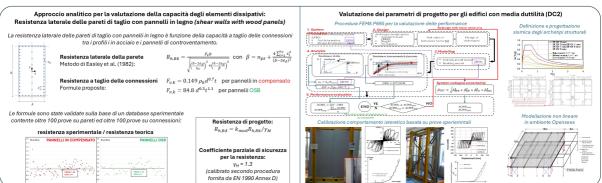
progettazione sismica di Edifici con ossatura leggera in profili sottili di acciaio formati a freddo. Progetto Triennale DPC-ReLUIS 2022-2024.

> strap braced walls

- > shear walls with steel sheet sheathing
- > shear walls with wood sheathing
- > shear walls with gypsum sheathing

- 1.5 (DC1) | 2.5 (DC3)
- 1.5 (DC1) | 2.5 (DC3)
- 1.5 (DC1) | 2.5 (DC3)
- 1.3 (DC1) | 2.0 (DC3)

1.1ω_m (DC3)


- 1.4 (DC3)
- 2.0 (DC3) 2.0 (DC3)
- Possibili tipologie di comportamento strutturale in termini di duttilità:

 > Non-dissipativo (DC1)

 > Dissipativo (DC3)

Approccio di progetto: Basato su metodi analitici

AGGIORNAMENTO DELLE LINEE GUIDA DI CARATTERE PRE-NORMATIVO SULLA PROGETTAZIONE SISMICA DI EDIFICI CON OSSATURA LEGGERA IN PROFILI CFS

