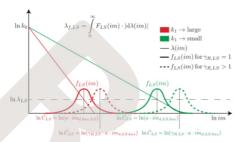
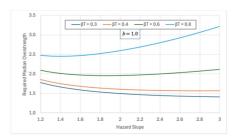


Progetto DPC-ReLUIS 2024-2026 WP 11 Task 4 – Rischio Uniforme (G. Monti)



From Uniform-Reliability to Uniform-Risk Seismic Design


G. Monti, C. El Moussawi, R. Rahmat Rabi Sapienza Università di Roma

Scope and Motivation

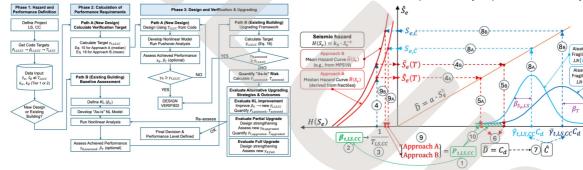
EN1998-1-1:2024 introduces reliability-based targets (Annex F). Current formulation → uniform reliability, not uniform risk. Hazard curve slope k is critical for real risk consistency.

Schematic of the different elements for calculating the mean annual Limit State (LS)-exceedance frequency, f_{LS} . $f_{LS}(im)$ denotes the PDF of the fragility function.

Required median performance factor $\hat{\gamma}_{t,LS,CC}$ as a function of hazard slope k for different total fragility dispersions β_T , for CC2, SD Limit State. With b=1.0 (equal displacement), the reference value in Annex F ($\beta_{S_0,LS}=0.6$, with $\beta_U=0$) yields a slope-neutral outcome, approximating a uniform-reliability design.

Method

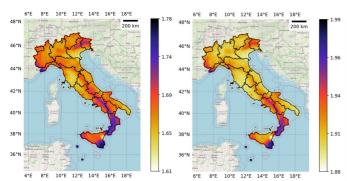
Simplified Workflow Diagram:


Inputs: Code targets (β, P_f) , hazard slope k, fragility (β_T) Process: Hazard & fragility \Rightarrow Target performance factor $\gamma_{t,LS,CC}$ Outputs: Verification KPI for design/assessment

Approach A (Median hazard):

Two Approaches:

Routine design → hazard slope + aleatory uncertainty only Approach B (Mean hazard):


Robust → hazard slope + aleatory + epistemic uncertainty

Workflow of the risk-targeted verification procedure, showing the connection between hazard curve, structural capacity, and target probability of exceedance of EN 1998-1-1:2024. The workflow proceeds from code targets (Steps 1-3), through hazard and fragility models (Steps 4-8), to final risk verification (Steps 9-10) to finally compute the factor \(\gamma_{LS,GC}\)

Results & Insights

- 1. Target performance factor $\gamma_{t,LS,CC}$ is a **KPI** linking hazard, uncertainty & performance
 - 2. Engineer checks compliance with $\gamma_-(t,LS,CC)$ (easier than $oldsymbol{eta}_{t,LS,CC})$
 - 3. Uniform reliability \neq uniform risk \rightarrow local slope k matters
 - 4. Enables rational design verification & retrofit strategies

Maps of Required Target Performance Factor ($\gamma_{t,LS,CC}$) for SD Limit State, CC2, $\beta_{S_e,LS}=0.6$. (left) Median-Based Target ($\hat{\gamma}_{t,LS,CC}$) calculated with \hat{k}_{lpha} (right) Mean-Based Target ($ar{\gamma}_{t,LS,CC}$) calculated with \hat{k}_{lpha} and $eta_{U}=0.4$.

Case Study: L'Aquila retrofit path

The table shows the initial "As-Is" performance and how it is improved first by enhancing knowledge ($eta_{\it U}$) and then by implementing physical upgrades (γ_R) . The final performance is expressed in terms of the risk-consistent return period (T_{eq}).

Stage	$eta_{\it U}$ (Knowledge)	γ _R (Achieved)	Υ _t (Benchmark)	Quantified Performance T_{eq}	Status
Initial Assessment	0.40 (KL2)	1.8 (As-Is)	2.20	344 years	Non- Compliant
After Improving Knowledge	0.25 (KL3)	1.8 (As-Is)	2.08	378 years	Non- Compliant, bu improved
After Partial Upgrade	0.25 (KL3)	2.00	2.08	442 years	Compliant*
Full Upgrade	0.25 (KL3)	≥ 2.08	2.08	≥ 473 years	Compliant