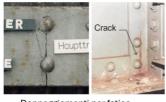


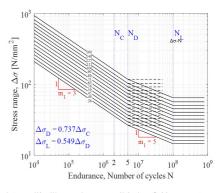
Progetto DPC-ReLUIS 2024-2026 WP 5

PROTEZIONE CIVILE
Presidenza del Consiglio dei Ministri
Dipartimento della Protezione Civile

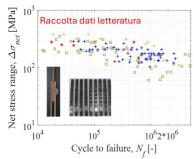
Task 5.4 - Interventi su ponti esistenti


Comportamento a fatica di unioni chiodate

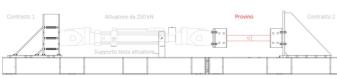
Gianvittorio Rizzano, Massimo Latour, Antonella Bianca Francavilla, Annarosa Lettieri, Aldo Milone, Mario D'Aniello, Raffaele Landolfo


1. Introduzione alla tematica affrontata ed approccio normativo

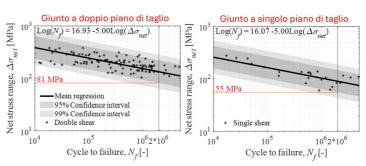
Il patrimonio infrastrutturale ferroviario e autostradale italiano è costituito in gran parte da ponti con struttura in acciaio costruiti prima degli anni '70 del secolo scorso. Queste strutture sono spesso tuttora mantenute in esercizio e, pertanto, soggette a carichi i quali sono aumentati rispetto ai carichi di progetto sia in termini di frequenza sia di intensità. Per la loro destinazione d'uso, inoltre, i dettagli costruttivi (i.e., unioni, collegamenti sia chiodati sia bullonati) sono sollecitati da escursioni tensionali fluttuanti che li rendono suscettibili a fenomeni di degrado per fatica. Il danneggiamento per fenomeni di fatica comporta l'innesco e la successiva propagazione di lesioni che possono potenzialmente causare crolli o problemi strutturali gravi limitando la capacità portante e/o la vita residua delle strutture.



Danneggiamenti per fatica (Haghani et al. 2012)


L'approccio corrente per la valutazione della resistenza a fatica dei dettagli costruttivi consiste nell'utilizzare le curve di fatica S-N proposte dall'Eurocodice 3 parte 1-9. Tale metodologia viene, tuttavia, applicata alle diverse tipologie prescindendo da alcuni parametri e fornendo stime spesso conservative. Per quanto concerne i dettagli strutturali chiodati, attualmente non è fornita alcuna indicazione codificata, sebbene esistano delle indicazioni provenienti dalla letteratura. A tal proposito, il documento "Assessment of Existing Steel Structures: Recommendations for Estimation of Remaining Fatigue Life" suggerisce un'unica classe di dettaglio, i.e., $\Delta \sigma_c = 71$ MPa, m = 3, per valutare la resistenza a fatica di tutti i dettagli chiodati. Inoltre, Taras et al., propone un catalogo di dettagli chiodati differenziandoli per tipologia e condizioni di sollecitazione/rottura.

2. Dati sulla resistenza a fatica di unioni chiodate


Sperimentazione diretta condotta presso l'Università di Salerno

3. Risultati ed osservazioni

I grafici sulla destra riportano i risultati delle prove sperimentali disponibili per la valutazione della resistenza a fatica di unioni chiodate. Le curve S-N di sono state determinate utilizzando coefficiente di pendenza pari a 5. Le figure evidenziano gli intervalli di sollecitazione netta frazionaria del 95% corrispondenti a 2 milioni di cicli, che, secondo Eurocodice 3 - Parte 1.9, è convenzionalmente indicato come resistenza a fatica. Come è possibile osservare, la resistenza a fatica per i dettagli a doppio taglio è pari a 81 MPa, un valore vicino alla proposta di Taras et al. 2010. Al contrario, la resistenza a fatica diminuisce per le connessioni a singolo taglio, in quanto si osserva un valore di 55 MPa.

La riduzione della resistenza a fatica può essere principalmente attribuita alle azioni secondarie indotte dall'eccentricità del carico in connessioni non simmetriche sulla resistenza a fatica del giunto.