

Progetto DPC-ReLUIS 2024-2026 WP 5

Task 5.1 Interventi integrati e sostenibili per la riqualificazione di edifici esistenti

Sustainable masonry retrofitting system

Flavio Stochino, Mauro Sassu, Fausto Mistretta, Andrea Frattolillo, Giovanna Concu, Mario Lucio Puppio, Marco Zucca, Arnas Majumder Department of Civil Environmental Engineering and Architecture, University of Cagliari, via Marengo 2, 09123 Cagliari, (CA), Italy

The UniCA research team conducted an extensive experimental campaign at the Materials Testing Laboratory of the Department of Civil and Environmental Engineering and Architecture, University of Cagliari. A total of 39 masonry wall specimens were constructed, using two different dimensions:

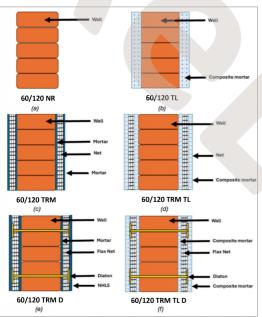
1.20 m × 1.20 m wall specimens (in accordance with ASTM E519) for diagonal compression tests,

 $0.60\ m\ \times\ 0.60\ m$ wall specimens, for both thermal conductance tests and subsequent diagonal compression tests to assess scaling effects.

All specimens were built with solid clay bricks (250 mm \times 120 mm \times 50 mm) using lime-based mortar and natural sand. Six retrofitting configurations were tested, employing flax fiber nets, jute fiber diatons, Sardinian sheep wool fiber (for composite mortar preparation), and a 70:30 mix of natural and recycled sand.

The results provide insights into the integrated improvement of the structural and thermal behavior of masonry walls reinforced with sustainable TRM systems. This work contributes to the development of low-carbon, resource-efficient solutions for the seismic and thermal upgrading of existing buildings, fully in line with the objectives of ReLUIS WP5 - Task 5.1.

Bricks (25 cm x 12 cm x 50 cm)



Flax fiber nets

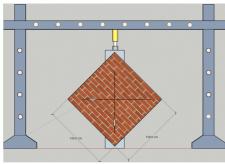
Chopped sheep wool fiber

Composite mortar (Natural sand (NS), recycled sand (RS), NHL (mortar), chopped sheep wool fiber)

(a) Non-retrofitted wall, (b) Retrofitted wall with thermal layer, (c) retrofitted wall with TRM system, (d) retrofitted wall with TRM system and thermal layer, (e) retrofitted wall with TRM system and diatons, and (f) retrofitted wall with TRM system, diatons and thermal layers

Nomenciatures used for nominating the masonry wails.	
Nomenclatures	Full form/meaning
60	0.6 m × 0.6 m
120	1.2 m × 1.2 m
NR	Non-retrofitted
TL	Thermal Layer
TRM	Textile Reinforced Mortar
TRM TL	Textile Reinforced Mortar, Thermal layer
TRM D	Textile Reinforced Mortar, Diaton
TRM TL D	Textile Reinforced Mortar, Thermal layer and Diaton

Nomanclatures used for nominating the masonry walls



Masonry wall construction: (a) 0.60 m x 0.60 m, and (b) 1.2 m x 1.2 m

and (c) masonry wall retrofitted with TRM, diatons and thermal layers.

Integrated (structural and thermal) property evaluation

diagonal compression test

Thermal conductance test: (a) Climate chamber, and (b) masonry wall specimens placed at the central wall

- Frattoilllo, A., Valdes, M., & Martinelli, E. (2025). Jute fiber reinforcement for masonry walls: Integrating structural strength and thermal insulation in sustainable upgrades. Journal of Building Engineering, 112210.
- Solicinicy, 1, Majurider, 2, Fratcollio, A, Valets, W., & Martinelli, E. (2021). Site intellerent for inassority wants. Integrating structural and termin insulation in sustainable upgazding expensions. Control of the Majumder, A., Stochino, F., Pattolillo, A., Martinelli, E., & Stochino, F. (2025). Natural fiber TRM for integrated upgrading/retrofitting. Buildings, 15(16), 1–27. doi.org/10.3390/buildings15162852.

 Majumder, A., Valdes, M., Frattolillo, A., Martinelli, E. (2025). Natural fiber TRM systems for sustainable seismic retrofitting of masonry walls: An experimental study using jute fibers. Structural integrity Procedia, XX ANIDIS Conference. (in press).

 Majumder, A., Stochino, F., Frattolillo, A., Valdes, M., & Martinelli, E. (2025). Strengthening of masonry walls using jute fiber: Merging structural and thermal upgrading/retrofitting. Structural Integrity Procedia, XX ANIDIS Conference. (in press).