

Progetto DPC-ReLUIS 2024-2026 WP11

Coordinatori: Proff. Spacone E. - Maglulo G.

Task 1. Modelli di capacità

Le innovazioni negli Eurocodici per la valutazione della capacità di elementi in c.a.

Responsabile: Prof. Verderame G.M.

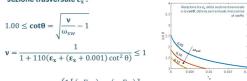
UniCH (Spacone) - Sapienza (Nisticò/Monti) - UniCT (Marino) – UniAQ (Gregori) - UniNA (Prota) - UniNA (Verderame) - UniNA (Bilotta) – Sapienza (Franchin/Mollaioli) - PoliTO (Di Trapani)

Capacità di elementi sensibili al taglio (travi e colonne)

La resistenza al taglio da **Eurocodici II generazione** viene valutata utilizzando un unico modello di resistenza:

- · sia in condizioni sismiche che non sismiche
- sia per elementi nuovi che per elementi esistenti.

Tale modello di resistenza parte dalla medesima schematizzazione a traliccio prevista dagli attuali eurocodici per gli elementi ex-novo, introducendo alcune modifiche:


$$\tau_R = f_{yw} \cdot \rho_{sw} \cdot \cot \theta \le \frac{\nu f_c}{2}$$

La valutazione della $\cot \theta$ può essere condotta seguendo due possibili approcci:

 \triangleright in forma chiusa, limitando la cotθ e fissando $\nu = 0.50$:

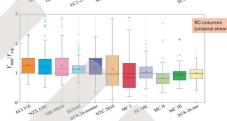
$$1.00 \leq \cot \theta = \sqrt{\frac{0.50}{\omega_{sw}} - 1} \leq \cot \theta_{min}$$

 \succ in modo iterativo, valutando ν sulla base dello stato deformativo della sezione trasversale $\epsilon_{\mathbf{v}}$:

 $=\frac{\varepsilon_{xt}+\varepsilon_{xc}}{2} = \frac{\frac{1}{2}\left[\left(\frac{\Gamma_t}{A_{st}E_s}\right) + \left(\frac{\Gamma_c}{A_{cc}E_c}\right)\right]}{\frac{1}{2}\left[\left(\frac{\Gamma_t}{A_{st}E_s}\right) + \left(\frac{|\Gamma_c|}{|A_{sc}E_s}\right)\right]} \quad quando \ F_c \ \grave{e} \ di \ trazione$

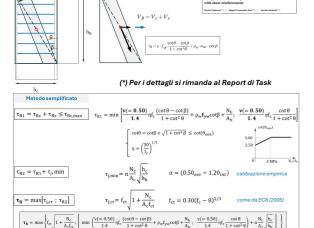
(*) Per i dettagli si rimanda al Report di Task

Prime applicazioni di modelli normativi e della versione del MCFT inclusa nelle bozze del futuro Eurocodice



Database: 36 colonne a sezione rettangolare fenomenologicament e fragili incluse nel database ACI369

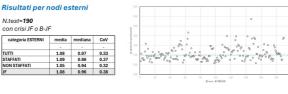
3													
											RC bi	eams xial shear	-)
dxo _A / _{mm} 1	CI318	3101	aoro Es	2004	onited ATC	2018	MC, E	can.	wen '	NC III	3.iter		
3						Ť	•				RC c	olumns xial shear)	
	+		+	-	+		T		:		taine	niai olical)	


Modello	Media	Mediana	CoV
di capacità	(pred/obs)	(pred/obs)	(pred/obs)
Ritter-Mörsch	0.34	0.23	72%
Traliccio a incl. var.	0.67	0.54	56%
EC8 parte 3 (2004)	1.22	1.23	23%
ASCE 41-17	1.07	0.99	38%
EC8 II gen	0.98	0.96	31%

Capacità di intersezioni nodali trave-colonna

Analisi del modello proposto dall'attuale bozza di futuri Eurocodici per nodi staffati e non staffati, sulla base del modello di Pejatovic et al. (2022) specializzato per elementi tozzi e del database (DB) collezionato da Bilotta e Cosenza (2022).

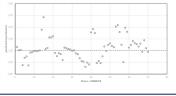
Valutazione del taglio resistente di nodo



Per i nodi **ESTERNI** del DB considerato, il modello (semplificato) applicato risulta mediamente in sovrastima del +8% rispetto al dato sperimentale. Il Coefficiente di Variazione (**CoV**) è maggiore 30%.

Per i nodi **INTERNI** del DB considerato, il modello (semplificato) applicato risulta mediamente in sovrastima del **+10%** rispetto al dato sperimentale. Il **CoV** è superiore al 40%.

Prime applicazioni del modello



Risultati per nodi interni

N.test=70 con crisi JF o B-JF

categoria INTERNI	media	mediana	CoV
	-	- 1	-
TUTTI	1.10	1.04	0.42
STAFFATI	1.11	1.05	0.45
NON STAFFATI	Nun	nero limitatissi:	mo
JF	1.12	1.10	0.45

