

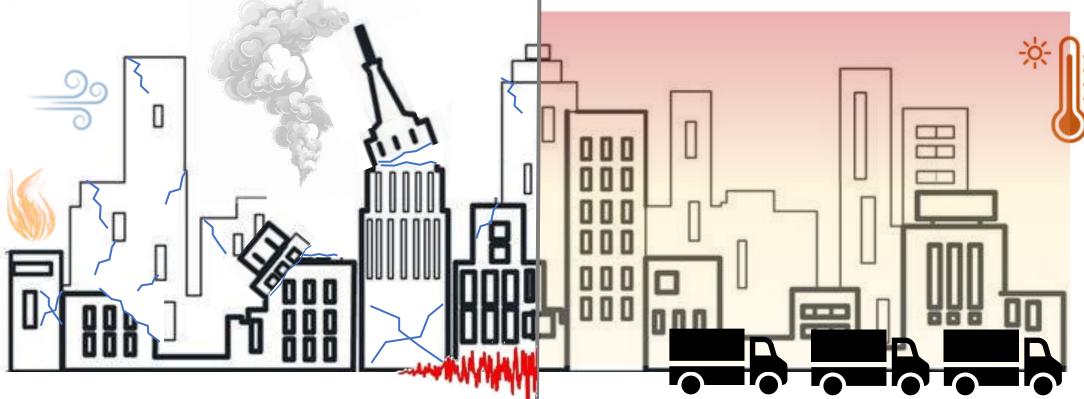
Progetto DPC_ReLUIS 2024-2026 Il anno

Napoli, 13-14 ottobre 2025

WP 13 CICLO DI VITA E SOSTENIBILITÀ DI COSTRUZIONI E INFRASTRUTTURE

Fabio Biondini ¹, Alessandra Marini ²

¹ Politecnico di Milano, ² Università di Bergamo



IL COSTRUITO ESISTENTE COSTITUIRA' L' 85% DELL'EDIFICATO NEL 2050

[European Environment Agency (EEA), Building renovation: where circular economy and climate meet, 2022]

Rischio per fenomeni naturali e antropici

[Building Stock Observatory Database,2020]

Impatti

35% energia
35% emissioni gas serra
35% rifiuti
50% materie prime

Rischio e impatti modellano gli ecosistemi

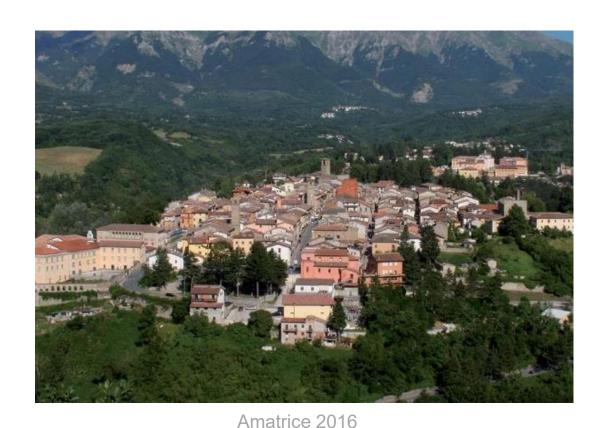
Riduzione rischio

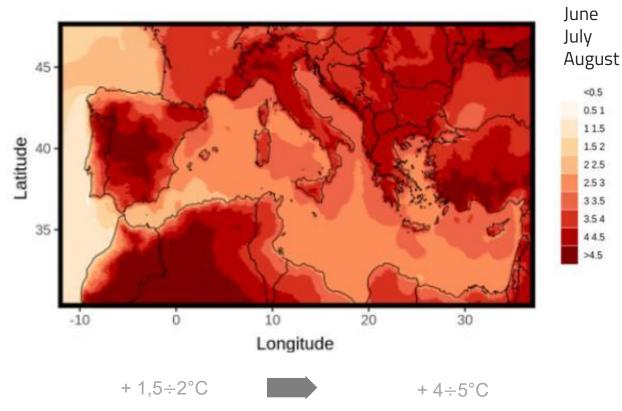
Transizione per la sostenibilità

- + decarboniz.2050²
- + Carbon budget stringente³

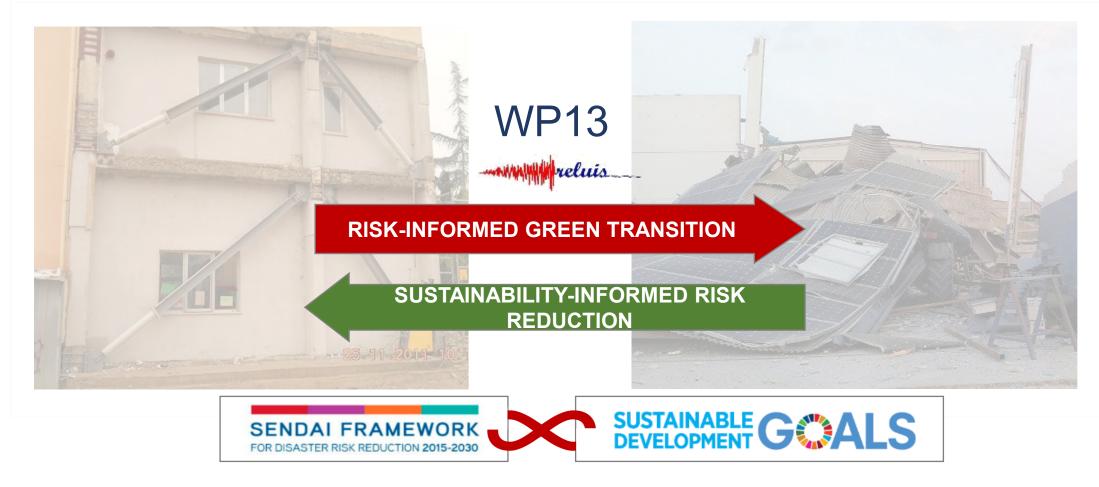
LA SOSTENIBILITÀ NON PERSEGUE UN OBIETTIVO SINGOLO, MA L'EQUILIBRIO TRA MOLTE DIMENSIONI, tra le quali, ad esempio: SICUREZZA, RESILIENZA, AFFIDABILITÀ, ECO-EFFICIENZA, COMFORT, EQUITÀ

Riduzione rischio


Transizione per la sostenibilità

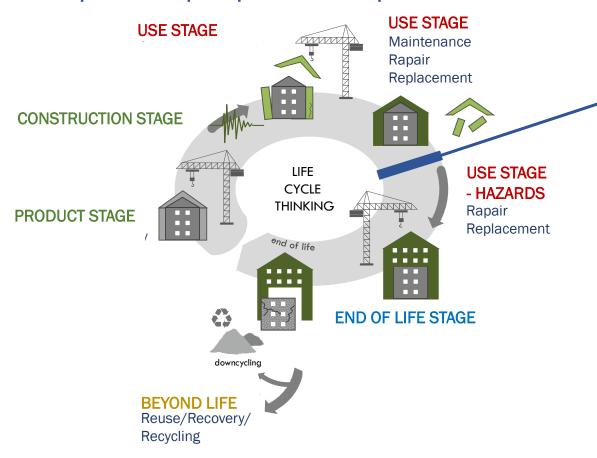


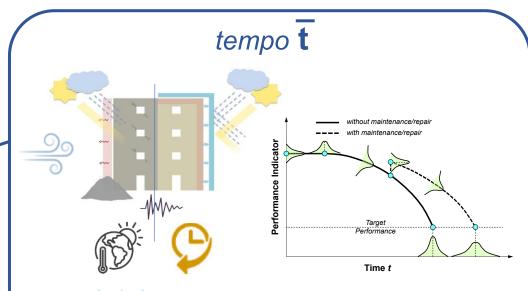
Impatto delle scelte di pianificazione, progettazione e gestione



Azioni parziali, non coordinate creano un ambiente non resiliente, compromettono gli obiettivi climatici e amplificano i rischi sistemici.

Le conseguenze non sono effetti collaterali tecnici: plasmano gli ecosistemi, l'equità sociale e la giustizia tra generazioni.


✓ Chiarire il contributo dell'ingegnere strutturista alla transizione per la sostenibilità reale del costruito
 ✓ Fornire strumenti per abilitare e operare il cambiamento



Cambio di paradigma:

1_ Ampliare la prospettiva temporale al ciclo vita

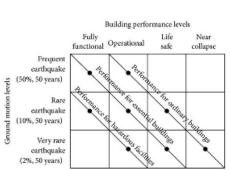
[* building's life cycle stages according to EN15978]

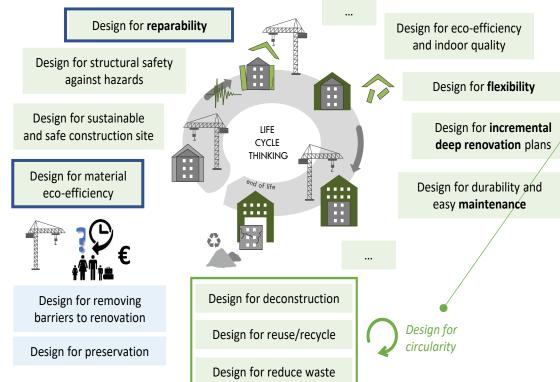
Edifici/Infrastrutture sono organismi complessi, che evolvono nel tempo, in un contesto dinamico e che impattano sulla comunità ad ogni livello lungo tutto il ciclo di vita

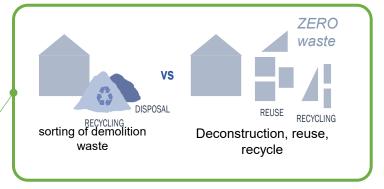
Devono garantire sostenibilità, resilienza, sicurezza e affidabilità, robustezza, funzionalità, comfort (...) lungo tutto il ciclo di vita

→ APPROCCIO A CICLO VITA

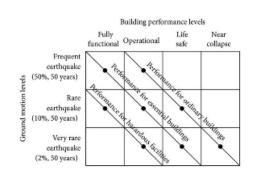
per governare le prestazioni e gli impatti

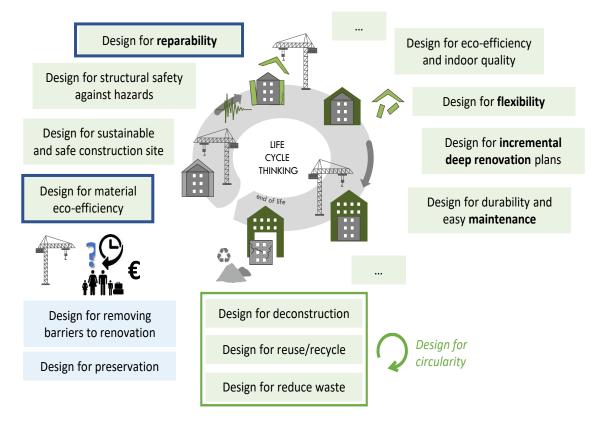



Cambio di paradigma:


2_ Integrazione di obiettivi prestazionali orientati alla sostenibilità

Massimizzare prestazioni e ridurre impatti


- ✓ I "design for" sono la base di una nuova etica del progetto strutturale: non solo conformità alle norme, ma responsabilità verso persone, ambiente e future generazioni.
- ✓ La sostenibilità si costruisce ex-ante, in fase di concezione, dove i valori prendono forma e le decisioni definiscono gli impatti a lungo termine.



Cambio di paradigma:

2_ Integrazione di obiettivi prestazionali orientati alla sostenibilità

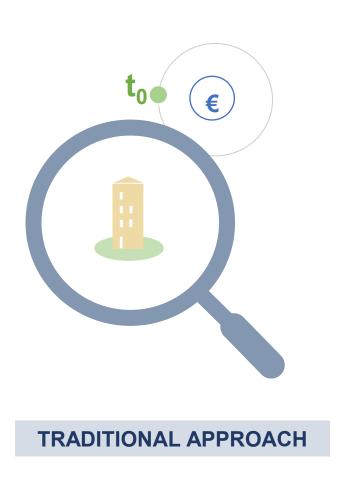
NUOVE TECNICHE, MATERIALI E/O REINGEGNERIZZAZIONE DI SOLUZIONI ESISTENTI

> NUOVI SCHEMI STRUTTURALI

STRATEGIE DI MODELLAZIONE

DETTAGLI COSTRUTTIVI

MODELLI DI BUSINESS


→ OPPORTUNITA' DI INNOVAZIONE E RICERCA

Cambio di paradigma:

3_Approccio sistemico per la valutazione/pianificazione/progettazione/gestione di edifici e infrastrutture

trade-offs

Type of Trade-offs in a Systemic Design/Decision making approach

Between life cycle stages

(use vs. construction/end-of-life)

Between **environmental categories**

(air vs. land/water)

Between sustainability pillars

(tech vs. equity/economy)

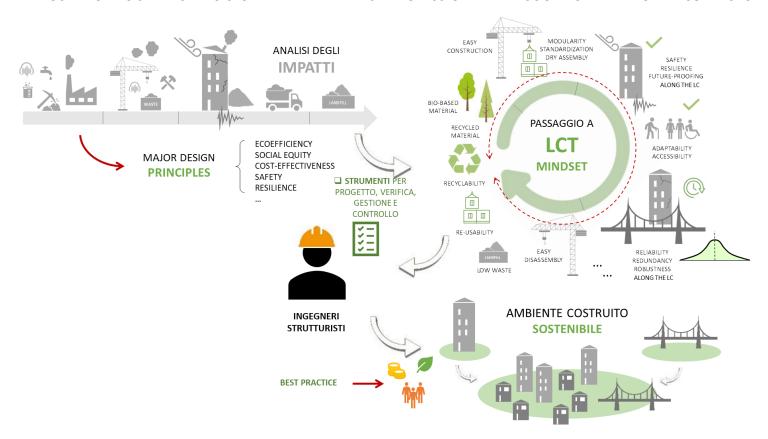
Between regions

(local gains vs. global impacts)

Between generations

(today's savings vs. tomorrow's costs)

[UNEP/SETAC report "Greening the Economy Through Life Cycle Thinking"]


SYSTEMIC APPROACH

Priorità e contributi del WP13 "Ciclo di vita e sostenibilità di costruzioni e infrastrutture

- ✓ SVILUPPO DI UN "LINGUAGGIO" CONDIVISO E UNA BASE CULTURALE COMUNE
- ✓ AUMENTARE LA CONSAPEVOLEZZA TECNICA, SOCIALE E POLITICA DELLA NECESSITÀ DI UN APPROCCIO SISTEMICO A CICLO DI VITA, CONSIDERANDO LE PRESTAZIONI STRUTTURALI E GLI IMPATTI NELL'INTERO CICLO DI VITA E CON UNA VISIONE MULTI-SCALA, DALLA SINGOLA OPERA ALLA DIMENSIONE URBANA E INFRASTRUTTURALE
- ✓ FAVORIRE L'APPLICAZIONE DELL'IMPOSTAZIONE SISTEMICA A CICLO VITA NELLA PRATICA PROFESSIONALE E IL SUO RECEPIMENTO NEL CONTESTO NORMATIVO

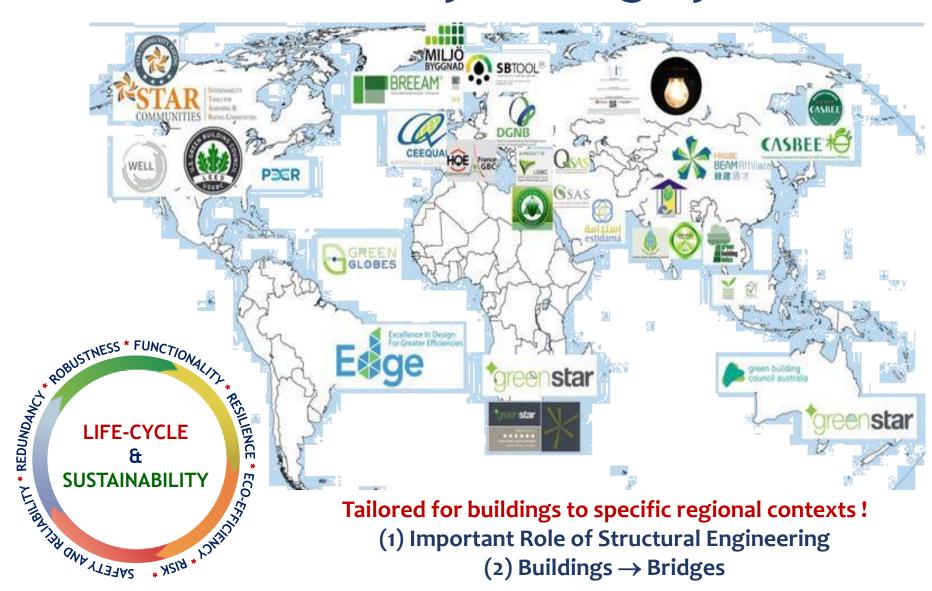
WP13 - Principi, Metodi, Strumenti

- ☐ Per il conseguimento degli obiettivi del progetto, le attività del WP sono suddivise in tre macro-Task
 - ✓ definizione di **principi, indicatori prestazionali e metriche per la sostenibilità** (sicurezza, affidabilità, eco-efficienza, funzionalità, robustezza e resilienza nel ciclo di vita)
 - ✓ sviluppo di **modelli di degrado** in grado di recepire i principali fenomeni di invecchiamento e danneggiamento, all'implementazione dei **criteri di progettazione strutturale** tenendo conto dei requisiti prestazionali nell'intero **ciclo di vita**
 - estensione dei criteri e metodi sviluppati per le **singole opere** alla valutazione delle prestazioni di **gruppi di opere** a **scala urbana e infrastrutturale**
- Task 13.1 Ciclo di vita e sostenibilità: principi, indicatori prestazionali e metriche
- Task 13.2 Metodi e strumenti per la modellazione e la valutazione
- Task 13.3 Progettazione e valutazione a ciclo di vita

Task 1 - Ciclo di vita e sostenibilità: principi, indicatori prestazionali e metriche

Task 1.1 - Principi

- ☐ Potenziali impatti nelle fasi del ciclo di vita e principi di verifica e progetto per la sostenibilità
- ☐ Classificazione degli interventi e criteri di reingegnerizzazione e riuso
- ☐ Matrici prestazionali multicriterio


Task 1.2 - Indicatori prestazionali e metriche

- ☐ Stato dell'arte sugli indicatori di sostenibilità
- ☐ Indicatori prestazionali nel ciclo di vita (sicurezza, affidabilità, robustezza, resilienza) e ruolo delle incertezze
- ☐ Modelli di costo nel ciclo di vita (costi diretti e costi indiretti)
- ☐ Metriche deterministiche, probabilistiche e basate sul rischio
- ☐ Matrici prestazionali multicriterio (quantitative)

Sustainability Rating Systems

breeam

LEED in USA, BREEAM in UK, HK-BEAM in Hong Kong, Green Mark in Singapore, Greenship in Indonesia, Green Building Index in Malaysia, and CASBEE in Japan.

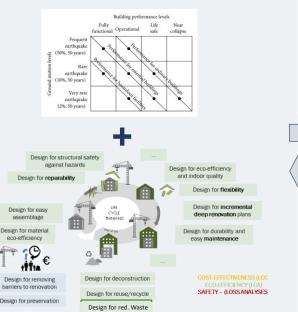
Tailored for buildings to specific regional contexts!

(1) Important Role of Structural Engineering

(2) Buildings \rightarrow Bridges

Sendai Framework for Disaster Risk Reduction

2015-2030


DESIGN VALUES (value-based design Systemic approach) t₀ (€)

SAFETY RESILIENCE

ECO-EFFICIENCY ECONOMIC SUST COMFORT **EQUITY**

17-7

DESIGN PERFORMANCE OBJECTIVES

DESIGN CHOICES

DESIGN STRATEGIES

STRUCTURAL SCHEMES

TECNIQUES/POSSIBLE RE-ENGINEERING OF EXISTING SOLUTIONS

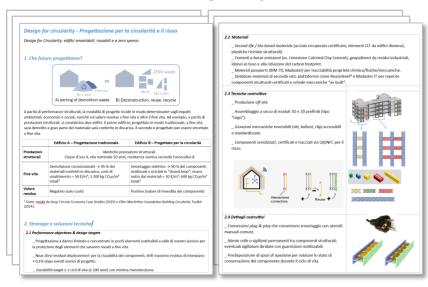
STRUCTURAL DETAILS

MATERIALS

STRUCTURAL MODELLING

BUSINESS MODELS

INTERNATIONAL 18252 1970



GPP - CAM

ISO 15932 / ISO 12720 ISO 21929-1 / ISO 21931-1 ISO 21928-2 / ISO 21931-2 ISO 20887

WHITE BOOK Sheets design objectives

PERFORMANCE AND SUSTAINABILITY METRICS AND INDICATORS

Categorized according to:

- Works (building or engineering construction works)
- Context (component, construction work, neighborhood, city/region)
- Stakeholder
- Framework phase
- Design objective

client brief

design

prescreening

Design **Phases**

rating

STRUCTURE AND INFRASTRUCTURE ENGINEERING https://doi.org/10.1080/15732479.2025.2558158

Literature Review

REVIEW ARTICLE

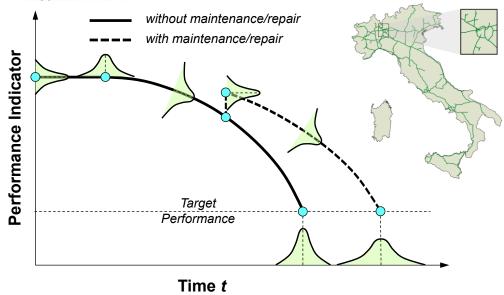
Metrics

& Tools

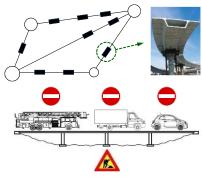
Sustainability in life-cycle structural engineering: Review

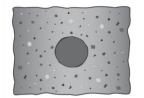
Task 2 - Metodi e strumenti per la modellazione e la valutazione

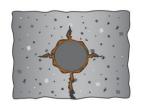
Task 2.1 -	Modellazione	del degrado e	e analisi strutturale
------------	--------------	---------------	-----------------------

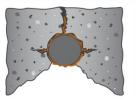

- □ Modellazione del degrado strutturale (c.a., c.a.p., acciaio, muratura, legno e altri materiali)
- ☐ Analisi strutturale e valutazione delle prestazioni nel tempo
- ☐ Effetti strutturali degli interventi di riparazione
- ☐ Effetti dei cambiamenti climatici sul degrado
- ☐ Validazione su base sperimentale (sperimentazione in laboratorio e su strutture esistenti)

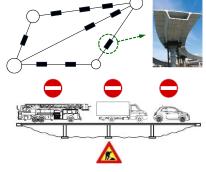
Task 2.2 - Affidabilità strutturale a ciclo di vita


- ☐ Incertezze e modelli probabilistici
- ☐ Analisi di affidabilità nel tempo
- ☐ Aggiornamento dei modelli sulla base di ispezioni e monitoraggio
- ☐ Valutazione della vita residua

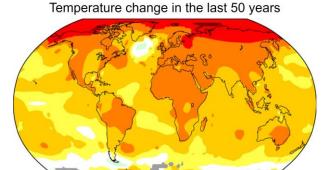




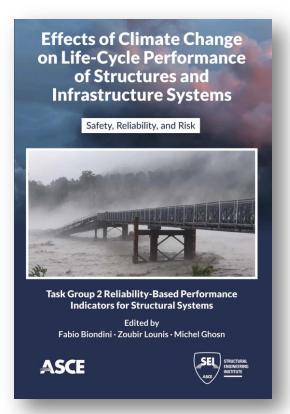

BEFORE CORROSION.

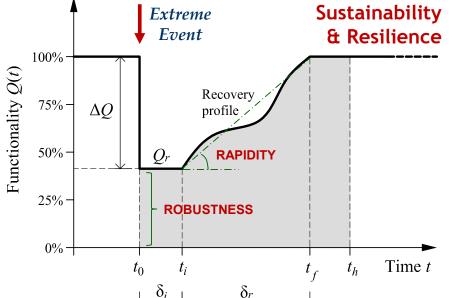

BUILD-UP OF CORROSION PRODUCTS.

FURTHER CORROSION. SURFACE CRACKS. STAINS.



EVENTUAL SPALLING. CORRODED BAR. EXPOSED.





2011-2020 average vs 1951-1980 baseline -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C

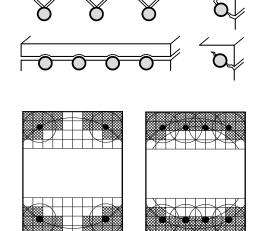
II Anno Progetto DPC ReLUIS 2024-2026 - Napoli 13-14 ottobre 2025

δ

0.2

0.0

MODELLAZIONE DEL DEGRADO


• (1) Almusallam (2001)

O (2) Kobayashi (2006)

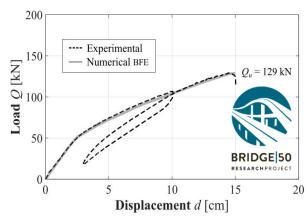
△ (3) Apostolopoulos & Papadakis (2008)

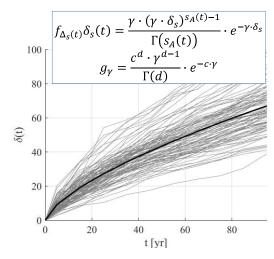
Damage index $\delta_s(t)$ [-]

0.8

ANALISI STRUTTURALE NEL TEMPO

3500


PRISTINE


VALIDAZIONE SPERIMENTALE

INCERTEZZE E AFFIDABILITÀ A CICLO DI VITA

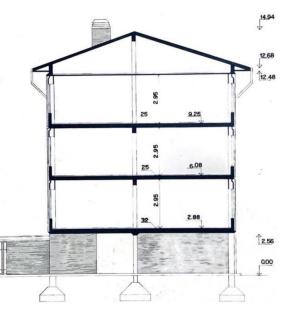
II Anno Progetto DPC ReLUIS 2024-2026 - Napoli 13-14 ottobre 2025

Task 3 - Progettazione e valutazione a ciclo di vita

Task 3.1 - Edifici

- ☐ Concezione strutturale orientata al ciclo di vita e obiettivi prestazionali
- ☐ Framework di progettazione a ciclo di vita
- ☐ Valutazione e classificazione integrata: indicatori prestazionali e protocolli
- ☐ Resilienza e sostenibilità di *edifici a scala urbana*

Task 3.2. Ponti


- ☐ Concezione strutturale orientata al ciclo di vita e obiettivi prestazionali
- ☐ Framework di progettazione a ciclo di vita
- ☐ Valutazione e classificazione integrata: indicatori prestazionali e protocolli
- ☐ Resilienza e sostenibilità di *ponti a scala infrastrutturale*

Task 3.1 - EDIFICI

Valutazioni di sostenibilità a ciclo di vita

- 1. Analisi comparativa di diverse tecniche di ispezione, diagnostica, manutenzione e rinforzo con approccio sistemico e impostazione a ciclo di vita
- 2. Analisi di sostenibilità con metriche, metodi e strumenti definiti nei Task 1 e 2
- 3. Analisi di impatto (economico, ambientale e sociale) a livello di aggregato e linee di indirizzo per politiche di gestione e pianificazione

Task 3.2 - PONTI (adapted from UNI EN 15978:2011) [Passoni, Palumbo, Pinho, Marini, 2022] PRODUCT USE END OF LIFE CONSTRUCTION B3³ C2 Maggiore degrado Sisma (appoggi, giunti) Cavalcavia "tradizionale" Sisma Cavalcavia integrale Effetto dei cicli stagionali di temperatura Cavalcavia integrale 2.0

Riscaldamento globale

Rete del Laboratori Universitari di Ingegneria Sismica e Strutturale

MAJOR DESIGN **PRINCIPLES INDICATORS METRICS**

ECOEFFICIENCY SOCIAL EQUITY COST-EFFECTIVENESS SAFETY **ROBUSTNESS** RELIABILITY RESILIENCE

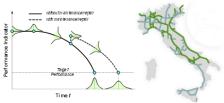
■ STRUMENTI PER PROGETTO, VERIFICA, **GESTIONE E** CONTROLLO

TASK 1

- PRINCIPI E CRITERI PER IL PROGETTO E PER LA VERIFICA DELLA SOSTENIBILITÀ E DELLE PRESTAZIONI STRUTTURALI
- INDICATORI, ANCHE INTEGRATI, E METRICHE PER LA QUANTIFICAZIONE E LA COMUMINCAZIONE DI SOSTENIBILITA' E P RESTAZIONI STRUTTURALI SU CICLO VITA

TASK 2

- CRITERI, METODI E STRUMENTI PER LA MODELLAZIONE, LA VALUTAZIONE, E LA PROGETTAZIONE A CICLO VITA


TASK 3

 STRUMENTI PER VALUTAZIONE/PROGETTO/ CONTROLLO E GESTIONE DALLA SINGOLA OPERA ALLA SCALA URBANA E INFRASTRUTTURALE

WP13 GRAPHICAL ABSTRACT

15 Università | 23 Unità di Ricerca | ~100 Partecipanti

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Università degli Studi della Basilicata

Università degli Studi di Cagliari

Biondini F., Marini A., Pinho R., Garavaglia E., Cardone D., Iervolino I., Chioccarelli E., Sassu M., Franchin P., Acanfora M., Aedo S., Aiello M.A., Aita C., Anghileri M., Aydin F., Belletti B., Bernardi P., Bernardini C., Bianchessi M., Blasi G., Bracchi S., Bruschi E., Buttazoni M., Calò M., Calò S., Cardani G., Caruso M., Casprini C., Choobdarian R., D'Iorio A., Dall'Asta A., D'Angela D., D'Angola A., Del Vecchio C., Di Carlo F., Di Ludovico M., Di Salvatore C., Ferretti D., Furinghetti M., Giresini L., Graziotti F., Gunduz G., Ibarra E., Ielpo P., Iervolino I., Jafari L., Kallioras S., Labo S., Laguardia R., Lanzo A., Lavorato D., Leone M., Magliulo G., Manfredi V., Marchi A., Masi A., Meda A., Mele E., Menna C., Metelli G., Micelli F., Michelini E., Micozzi F., Molitierno C., Monteiro R., Mucedero G., Nava G., Ning X., Parvanhero P., Passoni C., Pavese A., Penna A., Perrone D., Perrone G., Pettorruso C., Picciano V., Pinho R., Plizzari G., Possidente V., Prota A., Puppio M.L., Quaglini V., Reale S., Reggia A., Rinaldi Z., Romanzzi V., Rossi D., Rota M., Salvatori C., Santarsiero G., Santini S., Scattaerreggia N., Scozzese F., Sebastiani C., Sirico A., Tuozzo F., Ventura G., Wang Z., Xie S., Yoshii C., Yukselen B., Zoccolini L., Zona A.

Referente DPC: Adriano De Sortis

Referenti di Task:

Task 13.1.1	Rui Pinho, Università di Pavia		
Task 13.1.2	Elsa Garavaglia, Politecnico di Milano		
Task 13.2.1	Donatello Cardone, Università della Basilicata		
Task 13.2.2	Eugenio Chioccarelli, Università di Napoli Federico II		
	Iunio Iervolino, Università di Napoli Federico II		
Task 13.3.1	Mauro Sassu, Úniversità di Cagliari		
Task 13.3.2	Paolo Franchin, Sapienza Università di Roma		
	,		
RIUNIONI			
23/05/2024	WP13 Plenaria (Kick-off) Politecnico di Milano		
01/07/2024	Task 2 Centro Congressi MICO, Milano		
16/10/2024	Task 2 Università di Napoli Federico II		
07/11/2024	Task 1 Politecnico di Milano		
28/11/2024	DPC Online		
10/01/2025	Task 2 Sapienza Università di Roma		
14/01/2025	Task 3.1 Online		
24/01/2025	WP13 Plenaria <i>Sapienza Università di Roma</i>		
07/02/2025	Task 3 Sapienza Università di Roma		
29/04/2025	Task 3.2 Online		
08/05/2025	Referenti di Task Online		
23-24/06/2025	Task 2 Università di Napoli Federico II		
26/06/2025	Task 1 Università di Bergamo		
29/09/2025	Referenti di Task Online		
10/11/2025	Task 2 + 3 Sapienza Università di Roma		
13/11/2025	Task 1 Sapienza Università di Roma		
19/01/2026	WP13 Plenaria <i>Dip. della Protezione Civile, Roma</i>		

DPC-ReLUIS 2024-2026

WP13

CICLO DI VITA E SOSTENIBILITÀ DI COSTRUZIONI E INFRASTRUTTURE

Riunione di Avvio Progetto

23 maggio 2024

Aula Grandori

Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano

> Edificio 4 – Campus Leonardo Piazza Leonardo da Vinci, 32

2ª Riunione Plenaria

24 gennaio 2025

Aula Magna

Facoltà di Architettura Valle Giulia Sapienza Università di Roma

> via Antonio Gramsci, 53 Roma

~ 1000 Members | 66 Countries ialcce.org

October 6-8, 2024 | Fortress Island Ijmuiden, The Netherlands

Special Session "Sustainability"
Life-Cycle of Structures and Infrastructures:
ReLUIS-DPC WP13 Collaborative Research Project

WP13 Mini-Symposium (3 Sessions)

Life-Cycle and Sustainability of Structures and Infrastructure Systems

*** ~ 20 Papers presented ***

Progetto DPC_ReLUIS 2024-2026 Il anno

Napoli, 13-14 ottobre 2025

GRAZIE PER L'ATTENZIONE

3ª Riunione Plenaria WP13 | Roma, 19 gennaio 2026