

Progetto DPC_ReLUIS 2024-2026 Il anno

Napoli, 13-14 ottobre 2025

WP 16 – Geotecnica: contributi normativi e prodotti per gestione del rischio sismico

Francesco SILVESTRI

ORGANIZZAZIONE DEL WP 16 (2024-26)

coordinatore **Stefano AVERSA** dell'Università di Napoli Parthenope

- Task 16.1 Stabilità del sito coordinato da Sebastiano RAMPELLO di «Sapienza» Università di Roma
- Task 16.2 Interazione terreno-fondazione-struttura coordinato da Francesco SILVESTRI dell'Università di Napoli Federico II

Referente DPC: Giuseppe NASO

Partecipazione geotecnica a:

- WP 3 Modelli di vulnerabilità strutturale per pericoli naturali ed effetti industriali a cascata coordinato da I. Iervolino
- WP 4 Mappe di Rischio e Scenari di danno sismico (MARS-CARTIS) coordinato da S. Lagomarsino, A. Masi e G. Zuccaro
- WP 15 Dispositivi e Sistemi di Isolamento e Dissipazione coordinato da G. Serino e F.C. Ponzo
- WP 18 Input sismico, normativa e microzonazione coordinato da R. Paolucci e S. Foti

C. di Prisco (PoliMi)

L. Callisto (UniRoma1)

A. d'Onofrio (UniNa)

M.R. Massimino (UniCt)

S. Foti (PoliTo)

A. Pagliaroli (UniCh)

C. Lai (UniPv)

G. Lanzo (UniRoma1)

Obiettivi per il progetto 2024-26

WP 16 – Geotecnica: contributi normativi e prodotti per gestione del rischio sismico

Task 16.1 – Stabilità del sito

Sebastiano Rampello

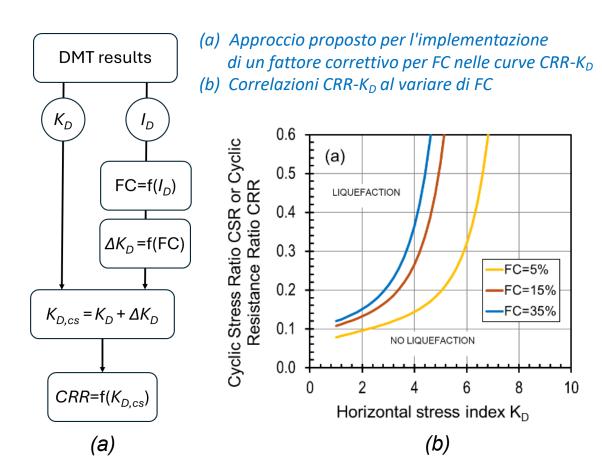
Articolazione generale del Task 16.1 2024-26 - contributi delle UR

SubTask	Tema	UR
		Coordinatore (referente)
16.1.1	1a. Innesco del fenomeno della liquefazione	
<u>Liquefazione</u>	Metodi semplificati basati su prove dilatometriche (DMT)	UnivAq Monaco
	Analisi comparativa di diversi metodi numerici	UniMol Santucci de Magistris
	Analisi sperimentale del c.d. «effetto sistema» Analisi degli effetti indotti sul costruito	UniNa Silvestri (Flora, Mele)
	1b. Mitigazione del rischio liquefazione	
	Efficacia di trattamenti con silice colloidale	UniFi Facciorusso
	Efficacia di trattamenti con parziale desaturazione	UniNa Silvestri (Flora, Mele)
16.1.2	2a. Pendii in roccia	
Stabilità dei pendii	Spostamenti di blocchi indotti da meccanismi di scorrimento	UniCa Tropeano
	Instabilità di blocchi per meccanismi di ribaltamento	UniParthenope Maiorano
	Analisi delle aree di distacco e della propagazione dei blocchi	UniNa Santo
	2b. Pendii in terra Modello multiblocco per l'analisi degli spostamenti da scorrimento	UniMe Cascone e Biondi
	Analisi multi-hazard in presenza di pioggia e sisma	UniRoma1 Rampello (Rollo)

Liquefazione

Metodi semplificati basati su prove dilatometriche (DMT) (UnivAq)

<u>Obiettivo:</u> Sviluppo / validazione di metodi semplificati per valutare il rapporto di resistenza ciclica CRR dall'indice di spinta orizzontale K_D della prova DMT sulla base di un robusto *dataset* sperimentale per casi ben documentati

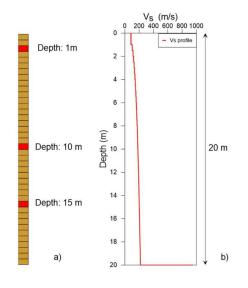

Metodo:

- 1. Implementazione di un *database* aggiornato con catalogazione sistematica / rivalutazione critica di *case histories* di liquefazione con dati DMT disponibili
- 2. Calibrazione di un nuovo approccio metodologico per l'implementazione nelle curve CRR- K_D di un fattore correttivo ΔK_D per il contenuto di fine (FC)

Risultati:

Contributo al miglioramento dei modelli empirici per le verifiche di innesco della liquefazione mediante formulazione di una correlazione diretta CRR-K_D

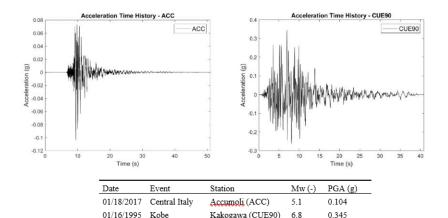
Chiaradonna A., Monaco P. (2025). DMT-based liquefaction triggering procedure accounting for the fines content effect. Soil Dynamics and Earthquake Engineering 199: 109668, https://doi.org/10.1016/j.soildyn.2025.109668



Analisi comparativa di diversi metodi numerici (UniMol)

<u>Obiettivo:</u> Confronti sull'innesco della liquefazione per una colonna di terreno sabbioso saturo, in condizioni *free-field*, utilizzando metodi empirici, analisi dinamica semplificata lineare equivalente (EQL) e analisi avanzata non lineare (NL)

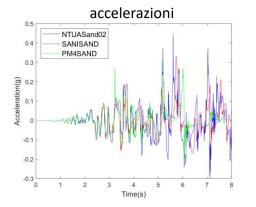
Metodo:

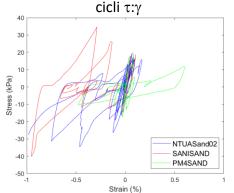

Selezione di una verticale di 20m di Nevada Sand

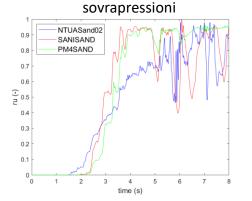
Risultati:

Primi risultati analisi NL (prof. 10m – Input: CUE90)

Selezione di due livelli di input




Calibrazione parametri Nevada Sand (per analisi NL)

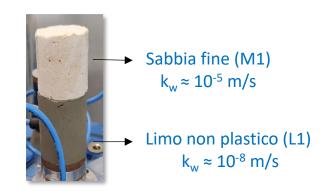

- NTUASand02 (Papadimitriou e Bouckovalas, 2002)
- -SANISAND (Taiebat et al., 2010)
- PM4SAND (Kamai e Boulanger, 2017)

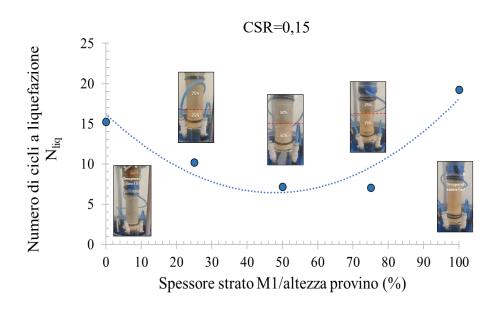
Implementazione dei modelli in:

STRATA (Kottke e Rathje, 2008) OpenSees (McKenna et al., 2010)

Analisi sperimentale del c.d. «effetto sistema» (UniNa)

Obiettivo:


verificare l'effetto dell'interazione tra strati adiacenti con diversa permeabilità sulla ridistribuzione delle Δu accumulate sotto azioni sismiche in condizioni non drenate ("effetto sistema")


Metodo:

esecuzione di prove triassiali cicliche non drenate su provini multistrato

Risultati:

contributo al miglioramento dei metodi empirici nelle analisi di suscettibilità alla liquefazione tenendo conto dell'interazione tra gli strati

Analisi degli effetti indotti sul costruito (UniNa)

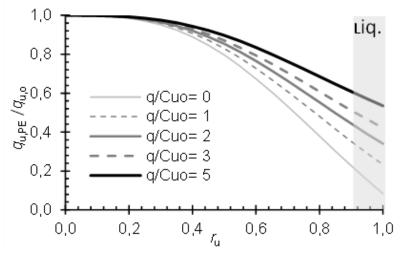
Obiettivo:

approfondire le conoscenze sugli effetti indotti dalla liquefazione

Metodo:

raccolta ed elaborazione di dati di sito disponibili, comprensivi di indagini sui terreni e di misure di cedimenti e rotazioni degli edifici (banca dati del terremoto in Turchia, 6 febbraio 2023)

Risultati:


messa a punto di approcci originali per la stima del carico limite e dei cedimenti indotti dalla liquefazione, anche parziale, dei terreni di fondazione (in collaborazione con UniMe)

L. Mele, G. Biondi, S. Lirer, O. Casablanca, E. Cascone, A. Flora. *The post-seismic bearing capacity of shallow foundations on saturated granular soils*. Geotechnique (submitted).

Cedimenti

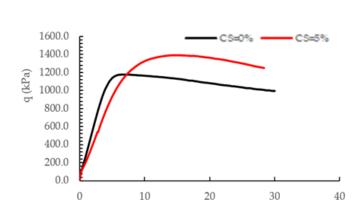
Carico Limite

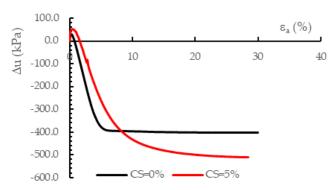
Mitigazione del rischio liquefazione

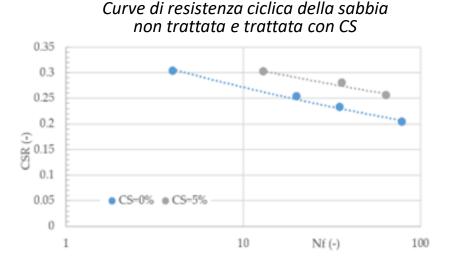
Efficacia di trattamenti con silice colloidale (UniFi)

<u>Obiettivo:</u> verifica di efficienza e applicabilità delle tecniche di mitigazione del rischio di liquefazione basate sull'impiego di iniezioni con silice colloidale (CS)

Metodo:


Prove di laboratorio su sabbia pulita e trattata con CS


Risultati di prove TxCU $D_r = 30-40\%$; $p_0' = 100 \text{ kPa}$


- Microscopia elettronica
- Prove triassiali monotone (CU)
- Prove triassiali cicliche (sforzo controllato)

Risultati:

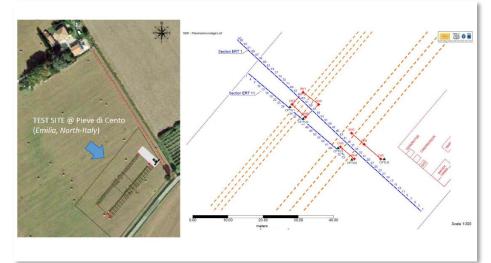
- il trattamento aumenta la resistenza di picco del materiale, a fronte di una minore rigidezza iniziale
- la sabbia trattata mostra un'iniziale maggiore tendenza a contrarre
- la resistenza ciclica di provini trattati risulta maggiore di quella di provini non trattati
- CS=5% rappresenta un buon compromesso fra efficacia ed economia del trattamento

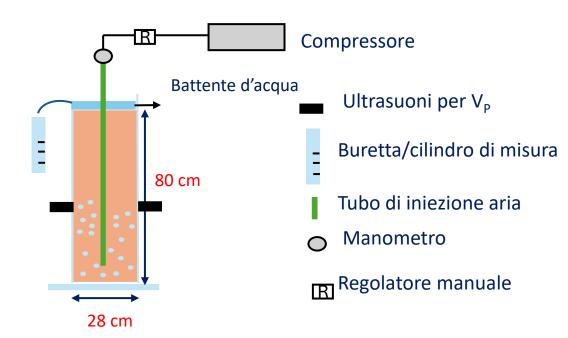
II Anno Progetto DPC_ReLUIS 2024-2026 - Napoli 13-14 ottobre 2025

Mitigazione del rischio liquefazione

Efficacia di trattamenti con parziale saturazione (UniNa)

Obiettivo:


valutare la durabilità dell'*Induced Partial Saturation* (IPS), tecnica innovativa per mitigare il rischio da liquefazione

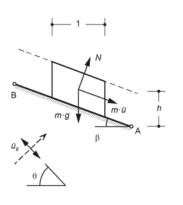

Metodo:

modello di laboratorio appositamente realizzato indagini tomografiche ERT e CH in sito

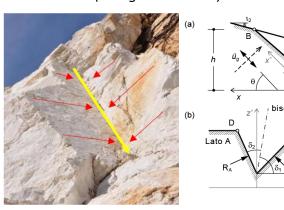
Risultati:

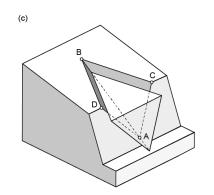
migliorare la conoscenza sull'IPS e sulle procedure esecutive (es. tempi di iniezione di aria/gas e numero di iniezioni nel tempo)

Stabilità dei pendii



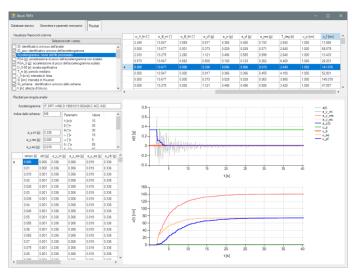
Pendii in roccia



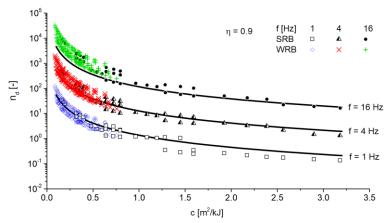

Spostamenti di blocchi indotti da meccanismi di scorrimento (UniCa)

Schema SRB (Single Rock Block)

Schema WRB (Wedge Rock Block)



Obiettivo:


aggiornare il metodo di valutazione degli spostamenti permanenti di blocchi di roccia scorrevoli su una o due superfici di scorrimento (SRB: prisma – WRB: cuneo) includendo gli effetti della degradazione delle asperità delle superfici di scorrimento

<u>Metodo:</u> strumento di calcolo per la generazione automatica di diversi schemi di blocco ai quali applicare diversi input sismici (segnali naturali da database/segnali analitici, scalati per opportune condizioni di innesco dello scorrimento) per svolgere analisi parametriche e rappresentarne i risultati

<u>Risultati:</u> definizione di coefficienti correttivi o procedure che consentano di integrare gli effetti della degradazione della resistenza disponibile lungo le superfici di scorrimento nelle relazioni semi-empiriche per la previsione di spostamenti permanenti sismo-indotti

Schermata dei risultati restituiti dallo strumento di calcolo

Tempo di degradazione (n_d) vs costante di degradazione del giunto (c)

Pendii in roccia

m=1,475-0,985*PGA

n= 0,154-0,099*PGA

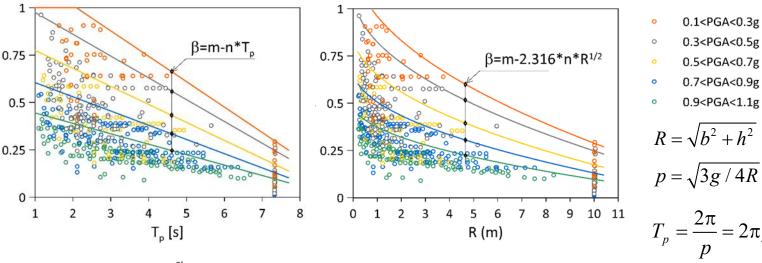
Instabilità di blocchi per meccanismi di ribaltamento (UniParthenope)

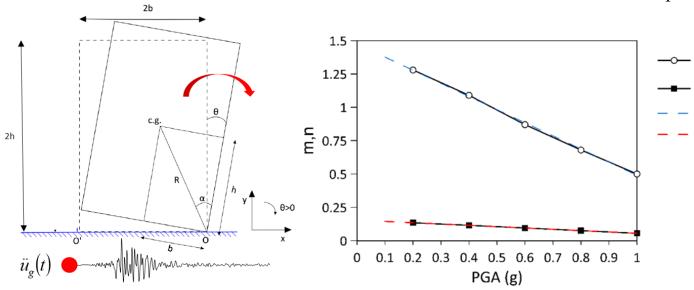
Obiettivo:

Valutare la stabilità al ribaltamento di blocchi di roccia sotto azioni sismiche

Metodo:

Analisi di ribaltamento per:


- 400 blocchi rettangolari
 con 0.1 m < b < 1 m e 0.1 < b/h < 0.5
- 150 storie accelerometriche da diversi database (Italiani, Europei)


Risultati:

Abachi per blocchi isolati ($rocking\ two\ sided$) Coefficiente sismico β funzione di:

- PGA (g)
- dimensione R o periodo T_p del blocco

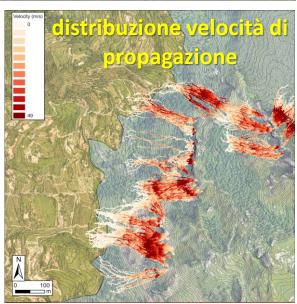
Maiorano, R.M.S., Mennitti, M., Aversa S. (2025) Reductive coefficients for pseudo-static analysis of seismic toppling of rock blocks. Rivista Italiana di Geotecnica vol. 4/2025.

Pendii in roccia

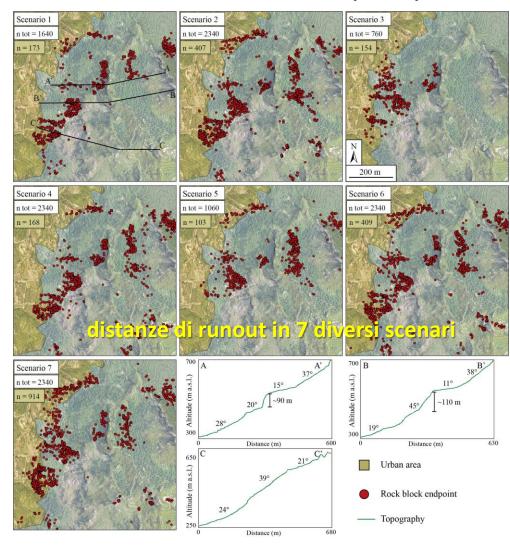
Analisi delle aree di distacco e della propagazione dei blocchi (UniNa)

Obiettivo:

Proposta di un workflow metodologico per lo studio della suscettibilità da frane da crollo in aree sismicamente attive, con modellazione numerica delle traiettorie per la definizione di velocità, energia di impatto e altezza di rimbalzo nelle aree di invasione


Metodo:

- analisi geostrutturale dell'affioramento
- raccolta dati multi scala con analisi fotogrammetrica mediante drone e LiDAR
- definizione della risposta sismica locale e dell'accelerazione critica del blocco
- modellazione numerica del runout dei blocchi tramite l'applicazione e il confronto di diversi software specializzati


Risultati:

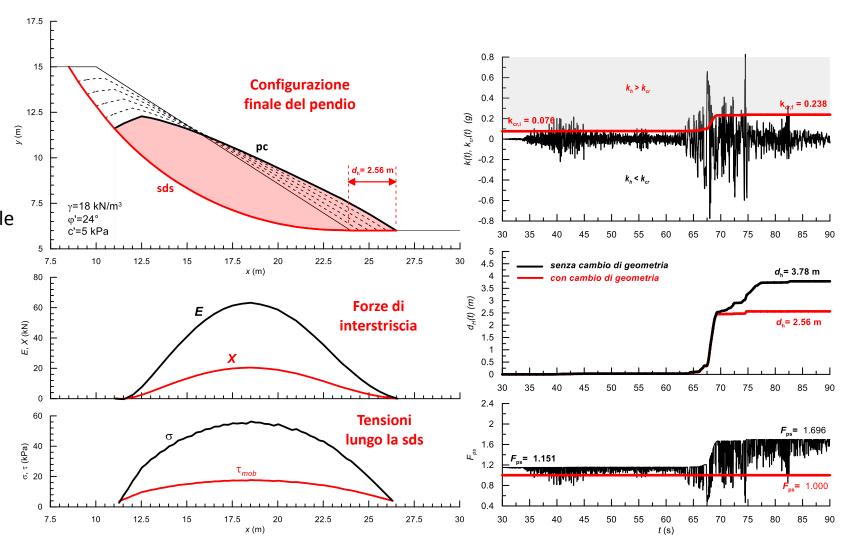
Elaborazione di mappe di suscettibilità al crollo in aree urbanizzate e lungo reti stradali finalizzate al dimensionamento di opere di mitigazione e dei sistemi di *early warning*

Caso studio: Frassitelli (Ischia)

Pendii in terra

Modello multiblocco per l'analisi degli spostamenti da scorrimento (UniMe)

Obiettivo:


Sviluppo di un modello numerico per la previsione di spostamenti permanenti per meccanismi da scorrimento caratterizzati da superfici mistilinee

Metodo:

Metodo GLE e approccio multi-blocco con modifica di geometria della massa instabile e variazione di resistenza a taglio dovuta a sovrappressioni interstiziali sismo-indotte. Analisi parametriche per differenti schemi di pendio e ampi insiemi di accelerogrammi. Individuazione dei parametri rilevanti ai fini previsionali.

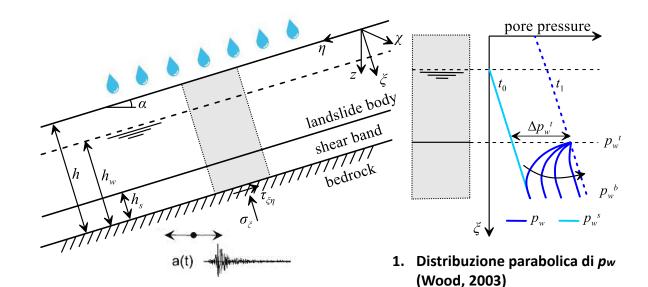
Risultati:

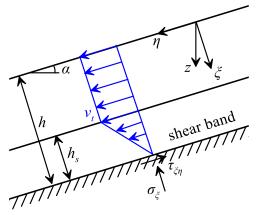
Definizione di espressioni per la previsione degli spostamenti permanenti e confronti con analisi tradizionali che trascurano le modifiche geometriche e la variazione di resistenza al taglio

Pendii in terra

Analisi multi-hazard in presenza di pioggia e sisma (UniRoma1)

Obiettivo:


Formulazione di un modello idro-meccanico semplificato per lo studio dell'effetto combinato di piogge e sisma sulla prestazione di pendii naturali


Metodo:

Approccio semi-analitico per portare in conto i processi idromeccanici che regolano lo sviluppo di sovrappressioni interstiziali e l'accumulo di spostamenti permanenti, assumendo nella banda di taglio un profilo lineare degli spostamenti e un profilo parabolico per le pressioni interstiziali

Risultati:

Problema idro-meccanico accoppiato risolto attraverso un sistema di equazioni differenziali in due incognite (sovrappressioni e velocità)

2. Profilo lineare della velocità

$$\begin{cases} \dot{p}_{w}^{eb} = -\frac{2E_{oed}k}{\gamma_{w}h_{s}^{2}\cos^{2}\alpha} \left(p_{w}^{eb} - \Delta p_{w}^{t}\right) + E_{oed}\dot{\varepsilon}^{p} + \dot{\sigma}_{d} \\ \rho h \ddot{v}_{t} = \dot{\tau}_{d} - \frac{G}{h_{s}}v_{t} + G\dot{\gamma}^{p} \end{cases}$$

Sovrappressione interstiziale alla base p_w^{eb} Velocità $v_{_t}$

Obiettivi per il progetto 2024-26

WP 16 – Geotecnica: contributi normativi e prodotti per gestione del rischio sismico

Task 16.2 – Interazione terreno-fondazione-struttura

Francesco Silvestri

Articolazione generale del Task 16.2 2024-26 - contributi delle UR

SubTask	Tema	UR	
		Coordinatore (referente)	
16.2.1	1a. Interazione terreno-fondazione-struttura (SFSI)		
Fondazioni di edifici	SFSI per strutture snelle	UniNa Silvestri (de Silva)	
	SFSI per strutture tozze	UniParthenope Maiorano (de Sanctis)	
	SFSI per strutture in aggregato	UniPg Tamagnini	
	1b. Interazione fondazione-terreno-fondazione (FSFI)		
	FSFI per SL Esercizio	UniSannio Sica	
	FSFI per SL Ultimo	UniMe Di Filippo (Biondi)	
16.2.2	2a. Fondazioni a pozzo		
Fondazioni di ponti	Formulazione analitica dei domini d'interazione in condizioni sismiche	UniCampania Di Laora	
		UniRoma1 Rampello (Gaudio)	
	2b. Fondazioni su pali		
	Formulazione analitica dei domini d'interazione in condizioni sismiche	UniRoma2 Conti	
	2c. Sistemi di fondazioni di viadotti		
	Variabilità spaziale del moto sismico	UniCal Ausilio / Zimmaro (Durante)	

Fondazioni di edifici

Interazione terreno-fondazione-struttura (SFSI): strutture snelle (UniNa)

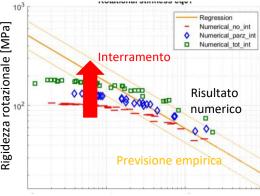
Obiettivo:

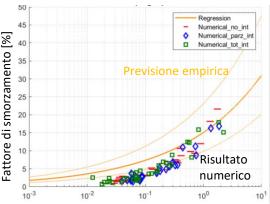
Quantificare effetti di non linearità e capacità dissipativa delle fondazioni 'basculanti' ('rocking') mediante relazioni semi-empiriche da validare con modellazione numerica e osservazioni sperimentali

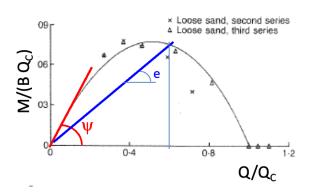
Metodo:

Analisi numeriche e prove su prototipi in scala (in collaborazione con AUTh)

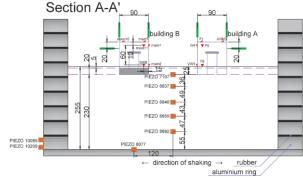

Risultati:

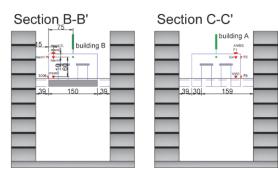

- Leggi di regressione che consentono di stimare la capacità dissipativa in funzione di parametri adimensionali
- Estensione della Web-app OD-In https://dynatools.it/odin
 per quantificare la capacità dissipativa delle fondazioni
- Verifica dei risultati numerici attraverso prove su prototipo (eseguite)
 e in centrifuga (in prospettiva)


de Silva F., Silvestri F. (2025). *Derivation, validation, and web application of dimensionless analytical solutions for equivalent period and damping ratio of soil-foundation-structure systems.* Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 151(6):04025049 doi.org/10.1061/JGGEFK.GTENG-12927

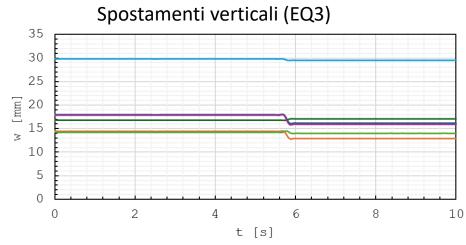

Interazione terreno-fondazione-struttura (SFSI): strutture tozze (UniParthenope)

Obiettivo:


Implementazione in TREMURI e validazione sperimentale di modelli di interazione SFSI per edifici in muratura con fondazioni superficiali (in collaborazione con UniPv)


Metodo:

- -macroelemento visco-elasto-plastico
- -modelli LPM
- -modellazione fisica in centrifuga

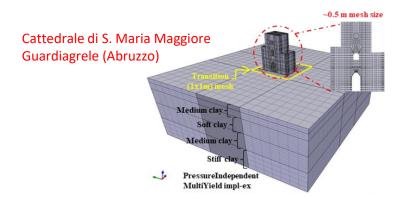


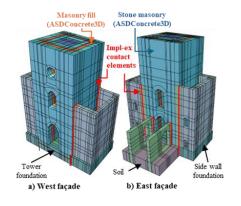
Bracchi S., Iovino M., Maiorano R.M.S., Rota M., Di Laora R., de Sanctis L., Penna A. (2025). Seismic response of URM buildings accounting for soilfoundation-structure interaction adopting lumped parameter models. XX ANIDIS Conference, Assisi, Italy.

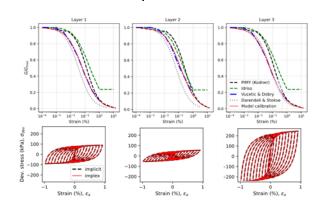
Risultati:

Quadro fessurativo

Edificio A

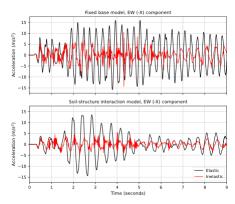

Edificio B

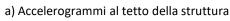


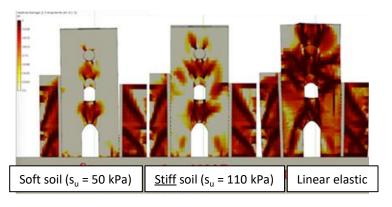


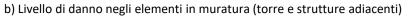
Interazione terreno-fondazione-struttura (SFSI): strutture in aggregato (UniPg)

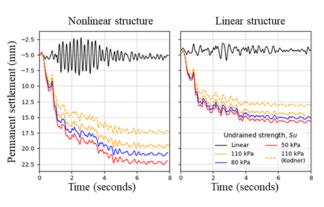
<u>Obiettivo</u>: Predisposizione di «Digital Twin» 3D di strutture in muratura per la definizione di *benchmarks* per la validazione di approcci semplificati <u>Metodo</u>: Modellazione FEM (OpenSees) con legame costitutivo PIMY (elasto-plastico ad incrudimento cinematico con superfici di snervamento multiple)




a) Discretizzazione agli EF: modello completo

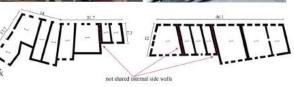

b) Discretizzazione agli EF: dettaglio della struttura

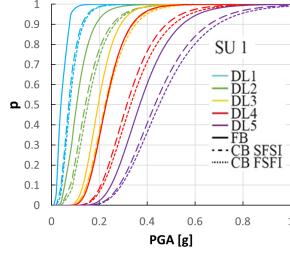

c) Curve di decadimento ottenute con PIMY in prove di taglio semplice


Risultati: Le rotazioni alla base della struttura controllano il suo periodo fondamentale il danneggiamento della torre principale è fortemente influenzato dalla non linearità del terreno, in misura minore gli elementi laterali

c) Cedimenti della fondazione al variare di s_u

Obiettivi:


Interazione fondazione-terreno-fondazione (FSFI): SL Esercizio (UniSannio)


Valutazione di curve di fragilità dell'aggregato portando in conto la FSFI

• Studio dell'effetto di interazione cinematica tra fondazioni superficiali e interrate al variare della distanza

listanza 🎚

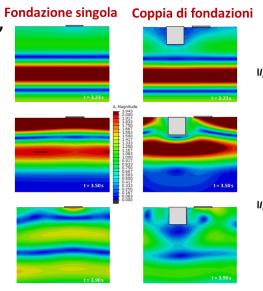
1) Aspetti inerziali

Metodo:

Modifica delle impedenze alla base degli aggregati

Risultati:

 La FSFI fa diminuire la fragilità rispetto al modello a base fissa, soprattutto per livelli di danno più severi


2) Aspetti cinematici

<u>Metodo</u>:

 Analisi parametriche su modelli di fondazioni superficiali e interrate

Risultati:

• Coefficienti correttivi, I_u e I_θ , per calcolare il FIM in corrispondenza della fondazione superficiale, al variare di frequenza e distanza da quella interrata

Interazione fondazione-terreno-fondazione (FSFI): SL Ultimo (UniMe)

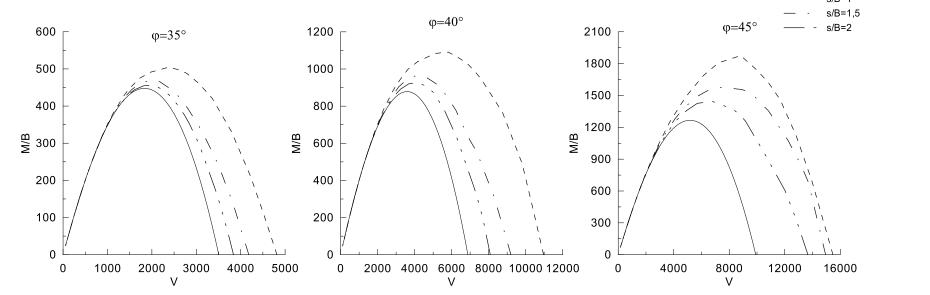
Obiettivi:

Analisi degli effetti dell'interferenza tra fondazioni adiacenti sul carico limite del sistema terreno-fondazione

В В

Metodo:

Analisi FEM: condizioni statiche e sismiche (approccio pseudo-statico)


$q_{lim,m} = \frac{1}{2} \gamma B \xi_{\gamma} N_{\gamma} + q \xi_{q} N_{q} + c \xi_{c} N_{c}$

Risultati:

Elaborazione di una formulazione analitica dei domini di interazione per sistemi di fondazioni e/o per la fondazione isolata equivalente

Fondazione singola

II Anno Progetto DPC ReLUIS 2024-2026 - Napoli 13-14 ottobre 2025

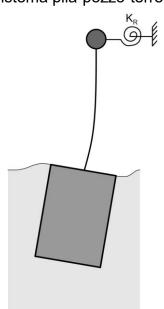
Fondazioni di ponti

Fondazioni (a pozzo) di ponti

Formulazione analitica dei domini d'interazione in condizioni sismiche (UniCampania)

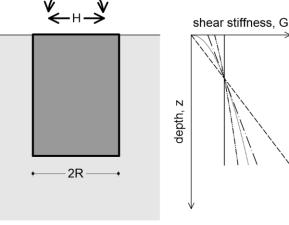
Obiettivo:

Valutazione del comportamento complessivo del sistema pila-pozzo-terreno sotto azioni sismiche

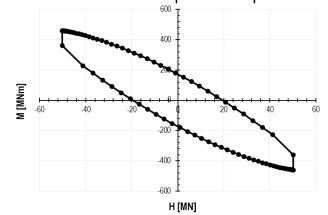

Metodo:

- Analisi numeriche FEM
- Metodi analitici

Risultati:


- Definizione di formule semi-empiriche per la stima della rigidezza statica di pozzi di fondazione
- Sviluppo di una soluzione analitica per la valutazione dei momenti cinematici prodotti lungo il fusto della pila per effetto del vincolo rotazionale dell'impalcato
- Sviluppo di una soluzione analitica per la definizione del dominio d'interazione del pozzo sotto carichi generalizzati

Sistema pila-pozzo-terreno




Definizione impedenze dinamiche

$$G(z) = G_R \left[b + (1 - b) \frac{z}{R} \right]$$

Dominio d'interazione nel piano H-M per un dato Q

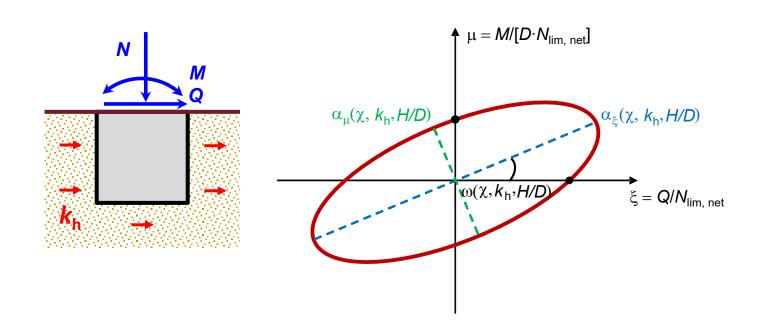
Fondazioni (a pozzo) di ponti

Formulazione analitica dei domini d'interazione in condizioni sismiche (UniRoma1)

Obiettivo:

Formulazione analitica dei domini d'interazione di pozzi per effetti cinematici in condizioni non drenate

Metodo:


Analisi di *pushover* FEM 3D del sistema pozzo – terreno mediante studio parametrico numerico al variare di:

- tasso di lavoro iniziale $\chi = N_{\text{net}}/N_{\text{lim,net}}$
- coefficiente sismico orizzontale, $k_{\rm h}$
- snellezza del pozzo, H/D

Terreno di fondazione: deposito alluvionale di sabbia sciolta + argilla leggermente sovraconsolidata

Risultati:

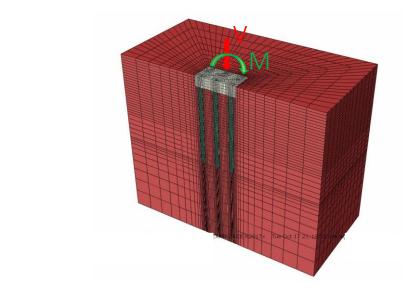
Relazione analitica in forma normalizzata del dominio d'interazione in condizioni sismiche

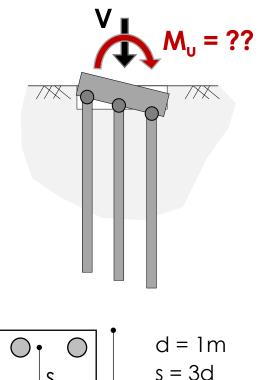
$$\left(\frac{\cos^{2}\omega}{a_{\xi}^{2}} + \frac{\sin^{2}\omega}{a_{\mu}^{2}}\right)\xi^{2} + \left(\frac{\sin^{2}\omega}{a_{\xi}^{2}} + \frac{\cos^{2}\omega}{a_{\mu}^{2}}\right)\mu^{2} + \sin 2\omega \left(\frac{1}{a_{\xi}^{2}} - \frac{1}{a_{\mu}^{2}}\right)\xi\mu = 1$$

Fondazioni (su pali) di ponti

Formulazione analitica dei domini d'interazione in condizioni sismiche (UniRoma2)

Obiettivo:

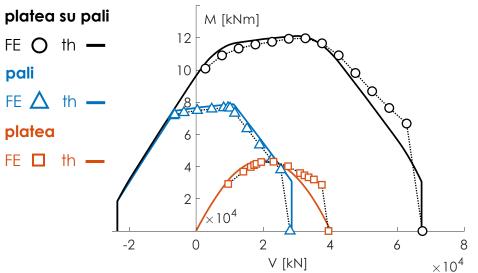

Valutare la capacità portante di fondazioni miste (platea + pali) sotto carichi verticali-eccentrici


Metodo:

Analisi di *pushover* 3D agli elementi finiti del sistema platea-pali-terreno Analisi Limite / Equilibrio Limite

Risultati:

Sviluppo di un metodo semplificato per il calcolo del dominio d'interazione di fondazioni miste nel piano M-V



L/d = 15

B/d = 8

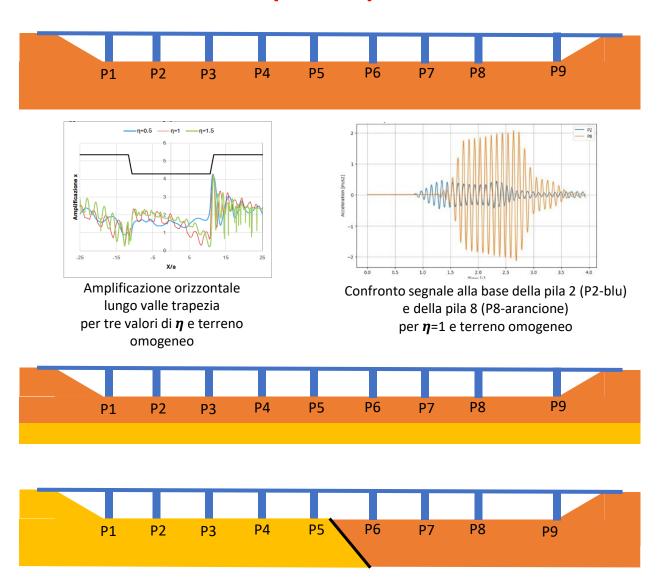
 $s_{11} = 100kPa$

0d10

Sistemi di fondazioni di viadotti

Variabilità spaziale del moto sismico (UniCal)

Obiettivo:


Valutare la variabilità spaziale del moto sismico per viadotti con significativo sviluppo longitudinale in presenza di irregolarità topografiche e stratigrafiche e per effetto dell'asincronismo (wave passage)

Metodo:

Analisi numeriche FEM con *OpenSees* di varie condizioni stratigrafiche e topografiche per la previsione dell'asincronismo dell'azione sismica in funzione della frequenza adimensionale η e dell'eterogeneità del deposito

Risultati:

- previsione della variazione del moto lungo l'infrastruttura
- valutazione dell'effetto delle condizioni stratigrafiche in presenza di discontinuità orizzontali e sub-verticali

Uscire dalla 'comfort zone' ? (Cosenza, 13.X.2025)

- Con maggiore contaminazione tra ingegneria strutturale e geotecnica
- Con attenzione al passaggio dall'elemento (micro o macro) al sistema (di strati, di blocchi, di fondazioni, di edifici)
- Rimuovendo le tradizionali ipotesi di base fissa della struttura e di capacità portante unidirezionale della fondazione

... SI PUO' FARE! (Mel Brooks, Frankenstein Junior 1974)

Grazie a:

Coordinatori Task

Coordinatori UR

I tanti ricercatori impegnati nel WP Geotecnico

Tutti voi per l'attenzione